Υπολογισμός
8\left(a^{4}-b^{4}\right)
Ανάπτυξη
8a^{4}-8b^{4}
Κουίζ
Algebra
5 προβλήματα όπως:
( 3 a ^ { 2 } - b ^ { 2 } ) ^ { 2 } - ( a ^ { 2 } - 3 b ^ { 2 } ) ^ { 2 }
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(p-q\right)^{2}=p^{2}-2pq+q^{2} για να αναπτύξετε το \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(p-q\right)^{2}=p^{2}-2pq+q^{2} για να αναπτύξετε το \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
Για να βρείτε τον αντίθετο του a^{4}-6a^{2}b^{2}+9b^{4}, βρείτε τον αντίθετο κάθε όρου.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
Συνδυάστε το 9a^{4} και το -a^{4} για να λάβετε 8a^{4}.
8a^{4}+b^{4}-9b^{4}
Συνδυάστε το -6a^{2}b^{2} και το 6a^{2}b^{2} για να λάβετε 0.
8a^{4}-8b^{4}
Συνδυάστε το b^{4} και το -9b^{4} για να λάβετε -8b^{4}.
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(p-q\right)^{2}=p^{2}-2pq+q^{2} για να αναπτύξετε το \left(3a^{2}-b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(p-q\right)^{2}=p^{2}-2pq+q^{2} για να αναπτύξετε το \left(a^{2}-3b^{2}\right)^{2}.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
Για να βρείτε τον αντίθετο του a^{4}-6a^{2}b^{2}+9b^{4}, βρείτε τον αντίθετο κάθε όρου.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
Συνδυάστε το 9a^{4} και το -a^{4} για να λάβετε 8a^{4}.
8a^{4}+b^{4}-9b^{4}
Συνδυάστε το -6a^{2}b^{2} και το 6a^{2}b^{2} για να λάβετε 0.
8a^{4}-8b^{4}
Συνδυάστε το b^{4} και το -9b^{4} για να λάβετε -8b^{4}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}