Υπολογισμός
-\frac{b^{3}}{4}+2b^{2}
Ανάπτυξη
-\frac{b^{3}}{4}+2b^{2}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(p+q\right)^{2}=p^{2}+2pq+q^{2} για να αναπτύξετε το \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Αναπτύξτε το \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Υπολογίστε το -2στη δύναμη του 2 και λάβετε 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Πολλαπλασιάστε 2 και 4 για να λάβετε 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Συνδυάστε το 4a^{4} και το -8a^{4} για να λάβετε -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Αναπτύξτε το \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Υπολογίστε το \frac{1}{2}στη δύναμη του 2 και λάβετε \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 1 και τον αριθμό 2 για να λάβετε τον αριθμό 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(p-q\right)^{2}=p^{2}-2pq+q^{2} για να αναπτύξετε το \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Πολλαπλασιάστε -1 και \frac{1}{4} για να λάβετε -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Συνδυάστε το -4a^{4} και το 4a^{4} για να λάβετε 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Συνδυάστε το 4a^{2}b και το -4a^{2}b για να λάβετε 0.
2b^{2}-\frac{1}{4}b^{3}
Συνδυάστε το b^{2} και το b^{2} για να λάβετε 2b^{2}.
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(p+q\right)^{2}=p^{2}+2pq+q^{2} για να αναπτύξετε το \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Αναπτύξτε το \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Υπολογίστε το -2στη δύναμη του 2 και λάβετε 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Πολλαπλασιάστε 2 και 4 για να λάβετε 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Συνδυάστε το 4a^{4} και το -8a^{4} για να λάβετε -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Αναπτύξτε το \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Υπολογίστε το \frac{1}{2}στη δύναμη του 2 και λάβετε \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 1 και τον αριθμό 2 για να λάβετε τον αριθμό 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(p-q\right)^{2}=p^{2}-2pq+q^{2} για να αναπτύξετε το \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Πολλαπλασιάστε -1 και \frac{1}{4} για να λάβετε -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Συνδυάστε το -4a^{4} και το 4a^{4} για να λάβετε 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Συνδυάστε το 4a^{2}b και το -4a^{2}b για να λάβετε 0.
2b^{2}-\frac{1}{4}b^{3}
Συνδυάστε το b^{2} και το b^{2} για να λάβετε 2b^{2}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}