Υπολογισμός
25a^{2}
Διαφόριση ως προς a
50a
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
125^{\frac{2}{3}}\left(a^{3}\right)^{\frac{2}{3}}
Αναπτύξτε το \left(125a^{3}\right)^{\frac{2}{3}}.
125^{\frac{2}{3}}a^{2}
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 3 με τον αριθμό \frac{2}{3} για να λάβετε τον αριθμό 2.
25a^{2}
Υπολογίστε το 125στη δύναμη του \frac{2}{3} και λάβετε 25.
\frac{2}{3}\times \left(125a^{3}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}a}(125a^{3})
Εάν F είναι η σύνθεση των δύο διαφορίσιμων συναρτήσεων f\left(u\right) και u=g\left(x\right), αυτό σημαίνει ότι, εάν F\left(x\right)=f\left(g\left(x\right)\right), τότε η παράγωγος της F είναι η παράγωγος της f ως προς u επί την παράγωγο της g ως προς x, δηλαδή, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{2}{3}\times \left(125a^{3}\right)^{-\frac{1}{3}}\times 3\times 125a^{3-1}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
250a^{2}\times \left(125a^{3}\right)^{-\frac{1}{3}}
Απλοποιήστε.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}