Υπολογισμός
-\frac{115}{2}=-57,5
Παράγοντας
-\frac{115}{2} = -57\frac{1}{2} = -57,5
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
-8-3\left(\left(-4\right)^{2}+2\right)-\frac{\left(-3\right)^{2}}{-2}
Υπολογίστε το -2στη δύναμη του 3 και λάβετε -8.
-8-3\left(16+2\right)-\frac{\left(-3\right)^{2}}{-2}
Υπολογίστε το -4στη δύναμη του 2 και λάβετε 16.
-8-3\times 18-\frac{\left(-3\right)^{2}}{-2}
Προσθέστε 16 και 2 για να λάβετε 18.
-8-54-\frac{\left(-3\right)^{2}}{-2}
Πολλαπλασιάστε 3 και 18 για να λάβετε 54.
-62-\frac{\left(-3\right)^{2}}{-2}
Αφαιρέστε 54 από -8 για να λάβετε -62.
-62-\frac{9}{-2}
Υπολογίστε το -3στη δύναμη του 2 και λάβετε 9.
-62-\left(-\frac{9}{2}\right)
Το κλάσμα \frac{9}{-2} μπορεί να γραφεί ξανά ως -\frac{9}{2}, αφαιρώντας το αρνητικό πρόσημο.
-62+\frac{9}{2}
Το αντίθετο ενός αριθμού -\frac{9}{2} είναι \frac{9}{2}.
-\frac{124}{2}+\frac{9}{2}
Μετατροπή του αριθμού -62 στο κλάσμα -\frac{124}{2}.
\frac{-124+9}{2}
Από τη στιγμή που οι αριθμοί -\frac{124}{2} και \frac{9}{2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
-\frac{115}{2}
Προσθέστε -124 και 9 για να λάβετε -115.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}