Υπολογισμός
2ab^{2}
Διαφόριση ως προς a
2b^{2}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{\left(-\frac{12}{7}\right)^{1}a^{4}b^{4}}{\left(-\frac{6}{7}\right)^{1}a^{3}b^{2}}
Χρησιμοποιήστε τους εκθετικούς κανόνες για να απλοποιήσετε την παράσταση.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{4-3}b^{4-2}
Για να διαιρέσετε δυνάμεις με την ίδια βάση, αφαιρέστε τον εκθέτη του παρονομαστή από τον εκθέτη του αριθμητή.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{1}b^{4-2}
Αφαιρέστε 3 από 4.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}ab^{2}
Αφαιρέστε 2 από 4.
2ab^{2}
Διαιρέστε το -\frac{12}{7} με το -\frac{6}{7}, πολλαπλασιάζοντας το -\frac{12}{7} με τον αντίστροφο του -\frac{6}{7}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{\frac{12b^{4}}{7}}{-\frac{6b^{2}}{7}}\right)a^{4-3})
Για να διαιρέσετε δυνάμεις με την ίδια βάση, αφαιρέστε τον εκθέτη του παρονομαστή από τον εκθέτη του αριθμητή.
\frac{\mathrm{d}}{\mathrm{d}a}(2b^{2}a^{1})
Κάντε την αριθμητική πράξη.
2b^{2}a^{1-1}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
2b^{2}a^{0}
Κάντε την αριθμητική πράξη.
2b^{2}\times 1
Για κάθε όρο t εκτός 0, t^{0}=1.
2b^{2}
Για κάθε όρο t, t\times 1=t και 1t=t.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}