Παράγοντας
\left(x-3\right)\left(x-1\right)x^{2}
Υπολογισμός
\left(x-3\right)\left(x-1\right)x^{2}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{2}\left(x^{2}-4x+3\right)
Παραγοντοποιήστε το x^{2}.
a+b=-4 ab=1\times 3=3
Υπολογίστε x^{2}-4x+3. Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως x^{2}+ax+bx+3. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
a=-3 b=-1
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Εφόσον το a+b είναι αρνητικό, το a και οι b είναι αρνητικά. Το μόνο τέτοιο ζεύγος είναι η λύση του συστήματος.
\left(x^{2}-3x\right)+\left(-x+3\right)
Γράψτε πάλι το x^{2}-4x+3 ως \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Παραγοντοποιήστε x στο πρώτο και στο -1 της δεύτερης ομάδας.
\left(x-3\right)\left(x-1\right)
Παραγοντοποιήστε τον κοινό όρο x-3 χρησιμοποιώντας επιμεριστική ιδιότητα.
x^{2}\left(x-3\right)\left(x-1\right)
Γράψτε ξανά την πλήρη παραγοντοποιημένη παράσταση.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}