Λύση ως προς x
x=-\sqrt{2}\approx -1,414213562
x=6
x=\sqrt{2}\approx 1,414213562
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
±12,±6,±4,±3,±2,±1
Από το θεώρημα της ορθοΛογικής ρίζας, όλες οι ορθολογικές ρίζες ενός πολυωνύμου είναι στη μορφή \frac{p}{q}, όπου p διαιρεί τον σταθερό όρο 12 και q διαιρεί τον κορυφαίο συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=6
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}-2=0
Κατά θεώρημα Factor, x-k είναι ένας παράγοντας του πολυωνύμου για κάθε ριζική k. Διαιρέστε το x^{3}-6x^{2}-2x+12 με το x-6 για να λάβετε x^{2}-2. Λύστε την εξίσωση όπου το αποτέλεσμα ισούται με 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-2\right)}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 0 για b και -2 για c στον πολυωνυμικό τύπου.
x=\frac{0±2\sqrt{2}}{2}
Κάντε τους υπολογισμούς.
x=-\sqrt{2} x=\sqrt{2}
Επιλύστε την εξίσωση x^{2}-2=0 όταν το ± είναι συν και όταν ± είναι μείον.
x=6 x=-\sqrt{2} x=\sqrt{2}
Λίστα όλων των λύσεων που βρέθηκαν.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}