Λύση ως προς x
x=60
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{2}-120x+3600=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 3600}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -120 και το c με 3600 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-120\right)±\sqrt{14400-4\times 3600}}{2}
Υψώστε το -120 στο τετράγωνο.
x=\frac{-\left(-120\right)±\sqrt{14400-14400}}{2}
Πολλαπλασιάστε το -4 επί 3600.
x=\frac{-\left(-120\right)±\sqrt{0}}{2}
Προσθέστε το 14400 και το -14400.
x=-\frac{-120}{2}
Λάβετε την τετραγωνική ρίζα του 0.
x=\frac{120}{2}
Το αντίθετο ενός αριθμού -120 είναι 120.
x=60
Διαιρέστε το 120 με το 2.
x^{2}-120x+3600=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
\left(x-60\right)^{2}=0
Παραγον x^{2}-120x+3600. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-60\right)^{2}}=\sqrt{0}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-60=0 x-60=0
Απλοποιήστε.
x=60 x=60
Προσθέστε 60 και στις δύο πλευρές της εξίσωσης.
x=60
Η εξίσωση έχει πλέον λυθεί. Οι λύσεις είναι ίδιες.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}