Λύση ως προς x
x=-4
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{2}+8x+37-21=0
Αφαιρέστε 21 και από τις δύο πλευρές.
x^{2}+8x+16=0
Αφαιρέστε 21 από 37 για να λάβετε 16.
a+b=8 ab=16
Για να λύσετε την εξίσωση, παραγοντοποιήστε x^{2}+8x+16 χρησιμοποιώντας τον τύπο x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,16 2,8 4,4
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι θετική, a και b είναι θετικοί. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 16.
1+16=17 2+8=10 4+4=8
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=4 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα 8.
\left(x+4\right)\left(x+4\right)
Επανεγγραφή παραγοντοποιηθεί παράστασης \left(x+a\right)\left(x+b\right) χρησιμοποιώντας τις τιμές που έχουν ληφθεί.
\left(x+4\right)^{2}
Επαναδιατυπώστε την ως τετράγωνο διωνύμου.
x=-4
Για να βρείτε τη λύση της εξίσωσης, λύστε το x+4=0.
x^{2}+8x+37-21=0
Αφαιρέστε 21 και από τις δύο πλευρές.
x^{2}+8x+16=0
Αφαιρέστε 21 από 37 για να λάβετε 16.
a+b=8 ab=1\times 16=16
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως x^{2}+ax+bx+16. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,16 2,8 4,4
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι θετική, a και b είναι θετικοί. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 16.
1+16=17 2+8=10 4+4=8
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=4 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα 8.
\left(x^{2}+4x\right)+\left(4x+16\right)
Γράψτε πάλι το x^{2}+8x+16 ως \left(x^{2}+4x\right)+\left(4x+16\right).
x\left(x+4\right)+4\left(x+4\right)
Παραγοντοποιήστε x στο πρώτο και στο 4 της δεύτερης ομάδας.
\left(x+4\right)\left(x+4\right)
Παραγοντοποιήστε τον κοινό όρο x+4 χρησιμοποιώντας επιμεριστική ιδιότητα.
\left(x+4\right)^{2}
Επαναδιατυπώστε την ως τετράγωνο διωνύμου.
x=-4
Για να βρείτε τη λύση της εξίσωσης, λύστε το x+4=0.
x^{2}+8x+37=21
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x^{2}+8x+37-21=21-21
Αφαιρέστε 21 και από τις δύο πλευρές της εξίσωσης.
x^{2}+8x+37-21=0
Η αφαίρεση του 21 από τον εαυτό έχει ως αποτέλεσμα 0.
x^{2}+8x+16=0
Αφαιρέστε 21 από 37.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με 8 και το c με 16 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 16}}{2}
Υψώστε το 8 στο τετράγωνο.
x=\frac{-8±\sqrt{64-64}}{2}
Πολλαπλασιάστε το -4 επί 16.
x=\frac{-8±\sqrt{0}}{2}
Προσθέστε το 64 και το -64.
x=-\frac{8}{2}
Λάβετε την τετραγωνική ρίζα του 0.
x=-4
Διαιρέστε το -8 με το 2.
x^{2}+8x+37=21
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
x^{2}+8x+37-37=21-37
Αφαιρέστε 37 και από τις δύο πλευρές της εξίσωσης.
x^{2}+8x=21-37
Η αφαίρεση του 37 από τον εαυτό έχει ως αποτέλεσμα 0.
x^{2}+8x=-16
Αφαιρέστε 37 από 21.
x^{2}+8x+4^{2}=-16+4^{2}
Διαιρέστε το 8, τον συντελεστή του όρου x, με το 2 για να λάβετε 4. Στη συνέχεια, προσθέστε το τετράγωνο του 4 και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+8x+16=-16+16
Υψώστε το 4 στο τετράγωνο.
x^{2}+8x+16=0
Προσθέστε το -16 και το 16.
\left(x+4\right)^{2}=0
Παραγον x^{2}+8x+16. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{0}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+4=0 x+4=0
Απλοποιήστε.
x=-4 x=-4
Αφαιρέστε 4 και από τις δύο πλευρές της εξίσωσης.
x=-4
Η εξίσωση έχει πλέον λυθεί. Οι λύσεις είναι ίδιες.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}