Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x (complex solution)
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{2}+x+1=-1
Συνδυάστε το 2x και το -x για να λάβετε x.
x^{2}+x+1+1=0
Προσθήκη 1 και στις δύο πλευρές.
x^{2}+x+2=0
Προσθέστε 1 και 1 για να λάβετε 2.
x=\frac{-1±\sqrt{1^{2}-4\times 2}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με 1 και το c με 2 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2}}{2}
Υψώστε το 1 στο τετράγωνο.
x=\frac{-1±\sqrt{1-8}}{2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-1±\sqrt{-7}}{2}
Προσθέστε το 1 και το -8.
x=\frac{-1±\sqrt{7}i}{2}
Λάβετε την τετραγωνική ρίζα του -7.
x=\frac{-1+\sqrt{7}i}{2}
Λύστε τώρα την εξίσωση x=\frac{-1±\sqrt{7}i}{2} όταν το ± είναι συν. Προσθέστε το -1 και το i\sqrt{7}.
x=\frac{-\sqrt{7}i-1}{2}
Λύστε τώρα την εξίσωση x=\frac{-1±\sqrt{7}i}{2} όταν το ± είναι μείον. Αφαιρέστε i\sqrt{7} από -1.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
Η εξίσωση έχει πλέον λυθεί.
x^{2}+x+1=-1
Συνδυάστε το 2x και το -x για να λάβετε x.
x^{2}+x=-1-1
Αφαιρέστε 1 και από τις δύο πλευρές.
x^{2}+x=-2
Αφαιρέστε 1 από -1 για να λάβετε -2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-2+\left(\frac{1}{2}\right)^{2}
Διαιρέστε το 1, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{1}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{1}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+x+\frac{1}{4}=-2+\frac{1}{4}
Υψώστε το \frac{1}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+x+\frac{1}{4}=-\frac{7}{4}
Προσθέστε το -2 και το \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{7}{4}
Παραγον x^{2}+x+\frac{1}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{1}{2}=\frac{\sqrt{7}i}{2} x+\frac{1}{2}=-\frac{\sqrt{7}i}{2}
Απλοποιήστε.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
Αφαιρέστε \frac{1}{2} και από τις δύο πλευρές της εξίσωσης.