Λύση ως προς N
N=\frac{5\sqrt{37946}Cϕ}{1693116m^{2}}
C\neq 0\text{ and }m\neq 0
Λύση ως προς C
\left\{\begin{matrix}C=\frac{846558\sqrt{37946}Nm^{2}}{94865ϕ}\text{, }&m\neq 0\text{ and }N\neq 0\text{ and }ϕ\neq 0\\C\neq 0\text{, }&m\neq 0\text{ and }ϕ=0\text{ and }N=0\end{matrix}\right,
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
ϕ=55512000NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Πολλαπλασιάστε 4500 και 12336 για να λάβετε 55512000.
ϕ=55512000NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Υπολογίστε το 10στη δύναμη του -4 και λάβετε \frac{1}{10000}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Πολλαπλασιάστε 55512000 και \frac{1}{10000} για να λάβετε \frac{27756}{5}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
Υπολογίστε το 10στη δύναμη του -2 και λάβετε \frac{1}{100}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{122}{2}\times 10^{-2}m}))
Πολλαπλασιάστε 185 και \frac{1}{100} για να λάβετε \frac{37}{20}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times 10^{-2}m}))
Διαιρέστε το 122 με το 2 για να λάβετε 61.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{61\times \frac{1}{100}m}))
Υπολογίστε το 10στη δύναμη του -2 και λάβετε \frac{1}{100}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}m}{\frac{61}{100}m}))
Πολλαπλασιάστε 61 και \frac{1}{100} για να λάβετε \frac{61}{100}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{20}}{\frac{61}{100}}))
Απαλείψτε το m στον αριθμητή και παρονομαστή.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{37}{20}\times \frac{100}{61}))
Διαιρέστε το \frac{37}{20} με το \frac{61}{100}, πολλαπλασιάζοντας το \frac{37}{20} με τον αντίστροφο του \frac{61}{100}.
ϕ=\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))
Πολλαπλασιάστε \frac{37}{20} και \frac{100}{61} για να λάβετε \frac{185}{61}.
\frac{27756}{5}NC^{-1}m^{2}\cos(\arctan(\frac{185}{61}))=ϕ
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N=ϕ
Η εξίσωση είναι σε τυπική μορφή.
\frac{\frac{27756\cos(\arctan(\frac{185}{61}))m^{2}}{5C}N\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
Διαιρέστε και τις δύο πλευρές με \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})).
N=\frac{ϕ\times 5C}{27756\cos(\arctan(\frac{185}{61}))m^{2}}
Η διαίρεση με το \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})) αναιρεί τον πολλαπλασιασμό με το \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})).
N=\frac{5\sqrt{37946}Cϕ}{1693116m^{2}}
Διαιρέστε το ϕ με το \frac{27756}{5}C^{-1}m^{2}\cos(\arctan(\frac{185}{61})).
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}