\left( \begin{array} { l l l } { 1 } & { 1 } & { 0 } \\ { 1 } & { 1 } & { t } \\ { 0 } & { 1 } & { 1 } \end{array} \right)
Υπολογισμός ορίζουσας
-t
Υπολογισμός
\left(\begin{matrix}1&1&0\\1&1&t\\0&1&1\end{matrix}\right)
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
det(\left(\begin{matrix}1&1&0\\1&1&t\\0&1&1\end{matrix}\right))
Βρείτε την ορίζουσα του πίνακα χρησιμοποιώντας τη μέθοδο των διαγώνιων.
\left(\begin{matrix}1&1&0&1&1\\1&1&t&1&1\\0&1&1&0&1\end{matrix}\right)
Αναπτύξτε τον αρχικό πίνακα, επαναλαμβάνοντας τις πρώτες δύο στήλες ως τέταρτη και πέμπτη στήλη.
1=1
Ξεκινώντας από το επάνω αριστερό στοιχείο, πολλαπλασιάστε προς τα κάτω κατά μήκος των διαγώνιων και προσθέστε τα γινόμενα που προκύπτουν.
t+1=t+1
Ξεκινώντας από το κάτω αριστερό στοιχείο, πολλαπλασιάστε προς τα επάνω κατά μήκος των διαγώνιων και προσθέστε τα γινόμενα που προκύπτουν.
1-\left(t+1\right)
Αφαιρέστε το άθροισμα των γινομένων των διαγώνιων προς τα επάνω από το άθροισμα των γινομένων των διαγωνίων προς τα κάτω.
-t
Αφαιρέστε t+1 από 1.
det(\left(\begin{matrix}1&1&0\\1&1&t\\0&1&1\end{matrix}\right))
Βρείτε την ορίζουσα του πίνακα χρησιμοποιώντας τη μέθοδο του αναπτύγματος ελασσόνων οριζουσών (γνωστή και ως ανάπτυγμα συμπαραγόντων).
det(\left(\begin{matrix}1&t\\1&1\end{matrix}\right))-det(\left(\begin{matrix}1&t\\0&1\end{matrix}\right))
Για να αναπτύξετε κατά τις ελάσσονες, πολλαπλασιάστε κάθε στοιχείο της πρώτης γραμμής με την ελάσσονά του, η οποία είναι η ορίζουσα του πίνακα 2\times 2 που δημιουργείται με τη διαγραφή της γραμμής και της στήλης που περιέχει αυτό το στοιχείο και, στη συνέχεια, πολλαπλασιάστε με το πρόσημο της θέσης του στοιχείου.
1-t-1
Για την \left(\begin{matrix}a&b\\c&d\end{matrix}\right) μήτρας 2\times 2, η ορίζουσα είναι ad-bc.
-t
Προσθέστε τους όρους για να λάβετε το τελικό αποτέλεσμα.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}