Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

det(\left(\begin{matrix}i&j&k\\-18&0&0\\9&5&-5\end{matrix}\right))
Βρείτε την ορίζουσα του πίνακα χρησιμοποιώντας τη μέθοδο των διαγώνιων.
\left(\begin{matrix}i&j&k&i&j\\-18&0&0&-18&0\\9&5&-5&9&5\end{matrix}\right)
Αναπτύξτε τον αρχικό πίνακα, επαναλαμβάνοντας τις πρώτες δύο στήλες ως τέταρτη και πέμπτη στήλη.
k\left(-18\right)\times 5=-90k
Ξεκινώντας από το επάνω αριστερό στοιχείο, πολλαπλασιάστε προς τα κάτω κατά μήκος των διαγώνιων και προσθέστε τα γινόμενα που προκύπτουν.
-5\left(-18\right)j=90j
Ξεκινώντας από το κάτω αριστερό στοιχείο, πολλαπλασιάστε προς τα επάνω κατά μήκος των διαγώνιων και προσθέστε τα γινόμενα που προκύπτουν.
-90k-90j
Αφαιρέστε το άθροισμα των γινομένων των διαγώνιων προς τα επάνω από το άθροισμα των γινομένων των διαγωνίων προς τα κάτω.
-90j-90k
Αφαιρέστε 90j από -90k.
det(\left(\begin{matrix}i&j&k\\-18&0&0\\9&5&-5\end{matrix}\right))
Βρείτε την ορίζουσα του πίνακα χρησιμοποιώντας τη μέθοδο του αναπτύγματος ελασσόνων οριζουσών (γνωστή και ως ανάπτυγμα συμπαραγόντων).
idet(\left(\begin{matrix}0&0\\5&-5\end{matrix}\right))-jdet(\left(\begin{matrix}-18&0\\9&-5\end{matrix}\right))+kdet(\left(\begin{matrix}-18&0\\9&5\end{matrix}\right))
Για να αναπτύξετε κατά τις ελάσσονες, πολλαπλασιάστε κάθε στοιχείο της πρώτης γραμμής με την ελάσσονά του, η οποία είναι η ορίζουσα του πίνακα 2\times 2 που δημιουργείται με τη διαγραφή της γραμμής και της στήλης που περιέχει αυτό το στοιχείο και, στη συνέχεια, πολλαπλασιάστε με το πρόσημο της θέσης του στοιχείου.
-j\left(-18\right)\left(-5\right)+k\left(-18\right)\times 5
Για την \left(\begin{matrix}a&b\\c&d\end{matrix}\right) μήτρας 2\times 2, η ορίζουσα είναι ad-bc.
-j\times 90+k\left(-90\right)
Απλοποιήστε.
-90j-90k
Προσθέστε τους όρους για να λάβετε το τελικό αποτέλεσμα.