Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Παράγοντας
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

det(\left(\begin{matrix}0&6&-4\\-5&5&1\\4&-2&1\end{matrix}\right))
Βρείτε την ορίζουσα του πίνακα χρησιμοποιώντας τη μέθοδο των διαγώνιων.
\left(\begin{matrix}0&6&-4&0&6\\-5&5&1&-5&5\\4&-2&1&4&-2\end{matrix}\right)
Αναπτύξτε τον αρχικό πίνακα, επαναλαμβάνοντας τις πρώτες δύο στήλες ως τέταρτη και πέμπτη στήλη.
6\times 4-4\left(-5\right)\left(-2\right)=-16
Ξεκινώντας από το επάνω αριστερό στοιχείο, πολλαπλασιάστε προς τα κάτω κατά μήκος των διαγώνιων και προσθέστε τα γινόμενα που προκύπτουν.
4\times 5\left(-4\right)-5\times 6=-110
Ξεκινώντας από το κάτω αριστερό στοιχείο, πολλαπλασιάστε προς τα επάνω κατά μήκος των διαγώνιων και προσθέστε τα γινόμενα που προκύπτουν.
-16-\left(-110\right)
Αφαιρέστε το άθροισμα των γινομένων των διαγώνιων προς τα επάνω από το άθροισμα των γινομένων των διαγωνίων προς τα κάτω.
94
Αφαιρέστε -110 από -16.
det(\left(\begin{matrix}0&6&-4\\-5&5&1\\4&-2&1\end{matrix}\right))
Βρείτε την ορίζουσα του πίνακα χρησιμοποιώντας τη μέθοδο του αναπτύγματος ελασσόνων οριζουσών (γνωστή και ως ανάπτυγμα συμπαραγόντων).
-6det(\left(\begin{matrix}-5&1\\4&1\end{matrix}\right))-4det(\left(\begin{matrix}-5&5\\4&-2\end{matrix}\right))
Για να αναπτύξετε κατά τις ελάσσονες, πολλαπλασιάστε κάθε στοιχείο της πρώτης γραμμής με την ελάσσονά του, η οποία είναι η ορίζουσα του πίνακα 2\times 2 που δημιουργείται με τη διαγραφή της γραμμής και της στήλης που περιέχει αυτό το στοιχείο και, στη συνέχεια, πολλαπλασιάστε με το πρόσημο της θέσης του στοιχείου.
-6\left(-5-4\right)-4\left(-5\left(-2\right)-4\times 5\right)
Για την \left(\begin{matrix}a&b\\c&d\end{matrix}\right) μήτρας 2\times 2, η ορίζουσα είναι ad-bc.
-6\left(-9\right)-4\left(-10\right)
Απλοποιήστε.
94
Προσθέστε τους όρους για να λάβετε το τελικό αποτέλεσμα.