Λύση ως προς λ
\lambda =\frac{4999001}{100000}=49,99001
\lambda =0
Κουίζ
Arithmetic
5 προβλήματα όπως:
\lambda ^ { 2 } - \frac { 4999001 \lambda } { 100000 } + 0000225 = 0
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
100000\lambda ^{2}-4999001\lambda +0\times 0\times 0\times 0\times 225=0
Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με 100000.
100000\lambda ^{2}-4999001\lambda +0\times 0\times 0\times 225=0
Πολλαπλασιάστε 0 και 0 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda +0\times 0\times 225=0
Πολλαπλασιάστε 0 και 0 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda +0\times 225=0
Πολλαπλασιάστε 0 και 0 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda +0=0
Πολλαπλασιάστε 0 και 225 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda =0
Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
\lambda \left(100000\lambda -4999001\right)=0
Παραγοντοποιήστε το \lambda .
\lambda =0 \lambda =\frac{4999001}{100000}
Για να βρείτε λύσεις εξίσωσης, να λύσετε \lambda =0 και 100000\lambda -4999001=0.
100000\lambda ^{2}-4999001\lambda +0\times 0\times 0\times 0\times 225=0
Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με 100000.
100000\lambda ^{2}-4999001\lambda +0\times 0\times 0\times 225=0
Πολλαπλασιάστε 0 και 0 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda +0\times 0\times 225=0
Πολλαπλασιάστε 0 και 0 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda +0\times 225=0
Πολλαπλασιάστε 0 και 0 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda +0=0
Πολλαπλασιάστε 0 και 225 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda =0
Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
\lambda =\frac{-\left(-4999001\right)±\sqrt{\left(-4999001\right)^{2}}}{2\times 100000}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 100000, το b με -4999001 και το c με 0 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-4999001\right)±4999001}{2\times 100000}
Λάβετε την τετραγωνική ρίζα του \left(-4999001\right)^{2}.
\lambda =\frac{4999001±4999001}{2\times 100000}
Το αντίθετο ενός αριθμού -4999001 είναι 4999001.
\lambda =\frac{4999001±4999001}{200000}
Πολλαπλασιάστε το 2 επί 100000.
\lambda =\frac{9998002}{200000}
Λύστε τώρα την εξίσωση \lambda =\frac{4999001±4999001}{200000} όταν το ± είναι συν. Προσθέστε το 4999001 και το 4999001.
\lambda =\frac{4999001}{100000}
Μειώστε το κλάσμα \frac{9998002}{200000} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
\lambda =\frac{0}{200000}
Λύστε τώρα την εξίσωση \lambda =\frac{4999001±4999001}{200000} όταν το ± είναι μείον. Αφαιρέστε 4999001 από 4999001.
\lambda =0
Διαιρέστε το 0 με το 200000.
\lambda =\frac{4999001}{100000} \lambda =0
Η εξίσωση έχει πλέον λυθεί.
100000\lambda ^{2}-4999001\lambda +0\times 0\times 0\times 0\times 225=0
Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με 100000.
100000\lambda ^{2}-4999001\lambda +0\times 0\times 0\times 225=0
Πολλαπλασιάστε 0 και 0 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda +0\times 0\times 225=0
Πολλαπλασιάστε 0 και 0 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda +0\times 225=0
Πολλαπλασιάστε 0 και 0 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda +0=0
Πολλαπλασιάστε 0 και 225 για να λάβετε 0.
100000\lambda ^{2}-4999001\lambda =0
Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
\frac{100000\lambda ^{2}-4999001\lambda }{100000}=\frac{0}{100000}
Διαιρέστε και τις δύο πλευρές με 100000.
\lambda ^{2}-\frac{4999001}{100000}\lambda =\frac{0}{100000}
Η διαίρεση με το 100000 αναιρεί τον πολλαπλασιασμό με το 100000.
\lambda ^{2}-\frac{4999001}{100000}\lambda =0
Διαιρέστε το 0 με το 100000.
\lambda ^{2}-\frac{4999001}{100000}\lambda +\left(-\frac{4999001}{200000}\right)^{2}=\left(-\frac{4999001}{200000}\right)^{2}
Διαιρέστε το -\frac{4999001}{100000}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{4999001}{200000}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{4999001}{200000} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
\lambda ^{2}-\frac{4999001}{100000}\lambda +\frac{24990010998001}{40000000000}=\frac{24990010998001}{40000000000}
Υψώστε το -\frac{4999001}{200000} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
\left(\lambda -\frac{4999001}{200000}\right)^{2}=\frac{24990010998001}{40000000000}
Παραγον \lambda ^{2}-\frac{4999001}{100000}\lambda +\frac{24990010998001}{40000000000}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{4999001}{200000}\right)^{2}}=\sqrt{\frac{24990010998001}{40000000000}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
\lambda -\frac{4999001}{200000}=\frac{4999001}{200000} \lambda -\frac{4999001}{200000}=-\frac{4999001}{200000}
Απλοποιήστε.
\lambda =\frac{4999001}{100000} \lambda =0
Προσθέστε \frac{4999001}{200000} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}