Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\int _{6}^{10}\left(-\frac{x^{3}}{3}+\frac{3\times 14733x}{3}\right)\times 0\times 6x\mathrm{d}x
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 14733x επί \frac{3}{3}.
\int _{6}^{10}\frac{-x^{3}+3\times 14733x}{3}\times 0\times 6x\mathrm{d}x
Από τη στιγμή που οι αριθμοί -\frac{x^{3}}{3} και \frac{3\times 14733x}{3} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\int _{6}^{10}\frac{-x^{3}+44199x}{3}\times 0\times 6x\mathrm{d}x
Κάντε τους πολλαπλασιασμούς στο -x^{3}+3\times 14733x.
\int _{6}^{10}\frac{-x^{3}+44199x}{3}\times 0x\mathrm{d}x
Πολλαπλασιάστε 0 και 6 για να λάβετε 0.
\int _{6}^{10}0\mathrm{d}x
Το γινόμενο οποιουδήποτε αριθμού με το μηδέν ισούται με μηδέν.
\int 0\mathrm{d}x
Υπολογίστε το αόριστο ολοκλήρωμα πρώτα.
0
Βρείτε το ολοκλήρωμα των 0 χρησιμοποιώντας τον πίνακα με τον κοινό ολοκληρώματα κανόνα \int a\mathrm{d}x=ax.
0+0
Το ορισμένο ολοκλήρωμα είναι η αντιπαράγωγος της παράστασης που έχει εκτιμηθεί στο άνω όριο της ολοκλήρωσης μείον την αντιπαράγωγο στο κάτω όριο της ολοκλήρωσης.
0
Απλοποιήστε.