Υπολογισμός
-\frac{12472}{3}\approx -4157,333333333
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\int _{0}^{4}\left(2x^{2}-525x\right)\left(1-0x\right)\mathrm{d}x
Πολλαπλασιάστε 0 και 125 για να λάβετε 0.
\int _{0}^{4}\left(2x^{2}-525x\right)\left(1-0\right)\mathrm{d}x
Το γινόμενο οποιουδήποτε αριθμού με το μηδέν ισούται με μηδέν.
\int _{0}^{4}\left(2x^{2}-525x\right)\times 1\mathrm{d}x
Αφαιρέστε 0 από 1 για να λάβετε 1.
\int _{0}^{4}2x^{2}-525x\mathrm{d}x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x^{2}-525x με το 1.
\int 2x^{2}-525x\mathrm{d}x
Υπολογίστε το αόριστο ολοκλήρωμα πρώτα.
\int 2x^{2}\mathrm{d}x+\int -525x\mathrm{d}x
Ενσωματώστε τον όρο άθροιση ανά όρο.
2\int x^{2}\mathrm{d}x-525\int x\mathrm{d}x
Παραγοντοποιήστε τη σταθερά σε κάθε όρο.
\frac{2x^{3}}{3}-525\int x\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{2}\mathrm{d}x με \frac{x^{3}}{3}. Πολλαπλασιάστε το 2 επί \frac{x^{3}}{3}.
\frac{2x^{3}}{3}-\frac{525x^{2}}{2}
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x\mathrm{d}x με \frac{x^{2}}{2}. Πολλαπλασιάστε το -525 επί \frac{x^{2}}{2}.
\frac{2}{3}\times 4^{3}-\frac{525}{2}\times 4^{2}-\left(\frac{2}{3}\times 0^{3}-\frac{525}{2}\times 0^{2}\right)
Το ορισμένο ολοκλήρωμα είναι η αντιπαράγωγος της παράστασης που έχει εκτιμηθεί στο άνω όριο της ολοκλήρωσης μείον την αντιπαράγωγο στο κάτω όριο της ολοκλήρωσης.
-\frac{12472}{3}
Απλοποιήστε.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}