Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\int _{4}^{9}\left(\sqrt{x}\right)^{2}+\sqrt{x}\mathrm{d}x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το \sqrt{x}+1 με το \sqrt{x}.
\int _{4}^{9}x+\sqrt{x}\mathrm{d}x
Υπολογίστε το \sqrt{x}στη δύναμη του 2 και λάβετε x.
\int x+\sqrt{x}\mathrm{d}x
Υπολογίστε το αόριστο ολοκλήρωμα πρώτα.
\int x\mathrm{d}x+\int \sqrt{x}\mathrm{d}x
Ενσωματώστε τον όρο άθροιση ανά όρο.
\frac{x^{2}}{2}+\int \sqrt{x}\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x\mathrm{d}x με \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{2x^{\frac{3}{2}}}{3}
Γράψτε πάλι το \sqrt{x} ως x^{\frac{1}{2}}. Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{\frac{1}{2}}\mathrm{d}x με \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Απλοποιήστε.
\frac{9^{2}}{2}+\frac{2}{3}\times 9^{\frac{3}{2}}-\left(\frac{4^{2}}{2}+\frac{2}{3}\times 4^{\frac{3}{2}}\right)
Το ορισμένο ολοκλήρωμα είναι η αντιπαράγωγος της παράστασης που έχει εκτιμηθεί στο άνω όριο της ολοκλήρωσης μείον την αντιπαράγωγο στο κάτω όριο της ολοκλήρωσης.
\frac{271}{6}
Απλοποιήστε.