Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\int _{1}^{2}x^{2}+3x-x-3\mathrm{d}x
Εφαρμόστε την επιμεριστική ιδιότητα πολλαπλασιάζοντας κάθε όρο του x-1 με κάθε όρο του x+3.
\int _{1}^{2}x^{2}+2x-3\mathrm{d}x
Συνδυάστε το 3x και το -x για να λάβετε 2x.
\int x^{2}+2x-3\mathrm{d}x
Υπολογίστε το αόριστο ολοκλήρωμα πρώτα.
\int x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -3\mathrm{d}x
Ενσωματώστε τον όρο άθροιση ανά όρο.
\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -3\mathrm{d}x
Παραγοντοποιήστε τη σταθερά σε κάθε όρο.
\frac{x^{3}}{3}+2\int x\mathrm{d}x+\int -3\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{2}\mathrm{d}x με \frac{x^{3}}{3}.
\frac{x^{3}}{3}+x^{2}+\int -3\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x\mathrm{d}x με \frac{x^{2}}{2}. Πολλαπλασιάστε το 2 επί \frac{x^{2}}{2}.
\frac{x^{3}}{3}+x^{2}-3x
Βρείτε το ολοκλήρωμα των -3 χρησιμοποιώντας τον πίνακα με τον κοινό ολοκληρώματα κανόνα \int a\mathrm{d}x=ax.
\frac{2^{3}}{3}+2^{2}-3\times 2-\left(\frac{1^{3}}{3}+1^{2}-3\right)
Το ορισμένο ολοκλήρωμα είναι η αντιπαράγωγος της παράστασης που έχει εκτιμηθεί στο άνω όριο της ολοκλήρωσης μείον την αντιπαράγωγο στο κάτω όριο της ολοκλήρωσης.
\frac{7}{3}
Απλοποιήστε.