Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\int \frac{1}{\sqrt{x}}-x\mathrm{d}x
Υπολογίστε το αόριστο ολοκλήρωμα πρώτα.
\int \frac{1}{\sqrt{x}}\mathrm{d}x+\int -x\mathrm{d}x
Ενσωματώστε τον όρο άθροιση ανά όρο.
\int \frac{1}{\sqrt{x}}\mathrm{d}x-\int x\mathrm{d}x
Παραγοντοποιήστε τη σταθερά σε κάθε όρο.
2\sqrt{x}-\int x\mathrm{d}x
Γράψτε πάλι το \frac{1}{\sqrt{x}} ως x^{-\frac{1}{2}}. Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{-\frac{1}{2}}\mathrm{d}x με \frac{x^{\frac{1}{2}}}{\frac{1}{2}}. Απλοποίηση και μετατροπή από εκθετική σε ριζική μορφή.
2\sqrt{x}-\frac{x^{2}}{2}
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x\mathrm{d}x με \frac{x^{2}}{2}. Πολλαπλασιάστε το -1 επί \frac{x^{2}}{2}.
2\times 2^{\frac{1}{2}}-\frac{2^{2}}{2}-\left(2\times 1^{\frac{1}{2}}-\frac{1^{2}}{2}\right)
Το ορισμένο ολοκλήρωμα είναι η αντιπαράγωγος της παράστασης που έχει εκτιμηθεί στο άνω όριο της ολοκλήρωσης μείον την αντιπαράγωγο στο κάτω όριο της ολοκλήρωσης.
2\sqrt{2}-\frac{7}{2}
Απλοποιήστε.