Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\int _{0}^{3}25x^{2}-30x+9\mathrm{d}x
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(5x-3\right)^{2}.
\int 25x^{2}-30x+9\mathrm{d}x
Υπολογίστε το αόριστο ολοκλήρωμα πρώτα.
\int 25x^{2}\mathrm{d}x+\int -30x\mathrm{d}x+\int 9\mathrm{d}x
Ενσωματώστε τον όρο άθροιση ανά όρο.
25\int x^{2}\mathrm{d}x-30\int x\mathrm{d}x+\int 9\mathrm{d}x
Παραγοντοποιήστε τη σταθερά σε κάθε όρο.
\frac{25x^{3}}{3}-30\int x\mathrm{d}x+\int 9\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{2}\mathrm{d}x με \frac{x^{3}}{3}. Πολλαπλασιάστε το 25 επί \frac{x^{3}}{3}.
\frac{25x^{3}}{3}-15x^{2}+\int 9\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x\mathrm{d}x με \frac{x^{2}}{2}. Πολλαπλασιάστε το -30 επί \frac{x^{2}}{2}.
\frac{25x^{3}}{3}-15x^{2}+9x
Βρείτε το ολοκλήρωμα των 9 χρησιμοποιώντας τον πίνακα με τον κοινό ολοκληρώματα κανόνα \int a\mathrm{d}x=ax.
\frac{25}{3}\times 3^{3}-15\times 3^{2}+9\times 3-\left(\frac{25}{3}\times 0^{3}-15\times 0^{2}+9\times 0\right)
Το ορισμένο ολοκλήρωμα είναι η αντιπαράγωγος της παράστασης που έχει εκτιμηθεί στο άνω όριο της ολοκλήρωσης μείον την αντιπαράγωγο στο κάτω όριο της ολοκλήρωσης.
117
Απλοποιήστε.