Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\int x^{2}+2+3x^{4}+2e^{9}\mathrm{d}x
Υπολογίστε το αόριστο ολοκλήρωμα πρώτα.
\int x^{2}\mathrm{d}x+\int 2\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int 2e^{9}\mathrm{d}x
Ενσωματώστε τον όρο άθροιση ανά όρο.
\int x^{2}\mathrm{d}x+\int 2\mathrm{d}x+3\int x^{4}\mathrm{d}x+2\int e^{9}\mathrm{d}x
Παραγοντοποιήστε τη σταθερά σε κάθε όρο.
\frac{x^{3}}{3}+\int 2\mathrm{d}x+3\int x^{4}\mathrm{d}x+2\int e^{9}\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{2}\mathrm{d}x με \frac{x^{3}}{3}.
\frac{x^{3}}{3}+2x+3\int x^{4}\mathrm{d}x+2\int e^{9}\mathrm{d}x
Βρείτε το ολοκλήρωμα των 2 χρησιμοποιώντας τον πίνακα με τον κοινό ολοκληρώματα κανόνα \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}+2x+\frac{3x^{5}}{5}+2\int e^{9}\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{4}\mathrm{d}x με \frac{x^{5}}{5}. Πολλαπλασιάστε το 3 επί \frac{x^{5}}{5}.
\frac{x^{3}}{3}+2x+\frac{3x^{5}}{5}+2e^{9}x
Βρείτε το ολοκλήρωμα των e^{9} χρησιμοποιώντας τον πίνακα με τον κοινό ολοκληρώματα κανόνα \int a\mathrm{d}x=ax.
\frac{100^{3}}{3}+2\times 100+\frac{3}{5}\times 100^{5}+2e^{9}\times 100-\left(\frac{0^{3}}{3}+2\times 0+\frac{3}{5}\times 0^{5}+2e^{9}\times 0\right)
Το ορισμένο ολοκλήρωμα είναι η αντιπαράγωγος της παράστασης που έχει εκτιμηθεί στο άνω όριο της ολοκλήρωσης μείον την αντιπαράγωγο στο κάτω όριο της ολοκλήρωσης.
\frac{18001000600}{3}+200e^{9}
Απλοποιήστε.