Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\int x^{2}+2x\mathrm{d}x
Υπολογίστε το αόριστο ολοκλήρωμα πρώτα.
\int x^{2}\mathrm{d}x+\int 2x\mathrm{d}x
Ενσωματώστε τον όρο άθροιση ανά όρο.
\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x
Παραγοντοποιήστε τη σταθερά σε κάθε όρο.
\frac{x^{3}}{3}+2\int x\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{2}\mathrm{d}x με \frac{x^{3}}{3}.
\frac{x^{3}}{3}+x^{2}
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x\mathrm{d}x με \frac{x^{2}}{2}. Πολλαπλασιάστε το 2 επί \frac{x^{2}}{2}.
\frac{5^{3}}{3}+5^{2}-\left(\frac{\left(-2\right)^{3}}{3}+\left(-2\right)^{2}\right)
Το ορισμένο ολοκλήρωμα είναι η αντιπαράγωγος της παράστασης που έχει εκτιμηθεί στο άνω όριο της ολοκλήρωσης μείον την αντιπαράγωγο στο κάτω όριο της ολοκλήρωσης.
\frac{196}{3}
Απλοποιήστε.