Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς y
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{5}}{y^{5}}-\frac{1}{y^{5}})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 1 επί \frac{y^{5}}{y^{5}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{5}-1}{y^{5}})
Από τη στιγμή που οι αριθμοί \frac{y^{5}}{y^{5}} και \frac{1}{y^{5}} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{y^{5}\frac{\mathrm{d}}{\mathrm{d}y}(y^{5}-1)-\left(y^{5}-1\right)\frac{\mathrm{d}}{\mathrm{d}y}(y^{5})}{\left(y^{5}\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{y^{5}\times 5y^{5-1}-\left(y^{5}-1\right)\times 5y^{5-1}}{\left(y^{5}\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{y^{5}\times 5y^{4}-\left(y^{5}-1\right)\times 5y^{4}}{\left(y^{5}\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{y^{5}\times 5y^{4}-\left(y^{5}\times 5y^{4}-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Αναπτύξτε χρησιμοποιώντας την επιμεριστική ιδιότητα.
\frac{5y^{5+4}-\left(5y^{5+4}-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{5y^{9}-\left(5y^{9}-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{5y^{9}-5y^{9}-\left(-5y^{4}\right)}{\left(y^{5}\right)^{2}}
Καταργήστε τις περιττές παρενθέσεις.
\frac{\left(5-5\right)y^{9}+\left(-\left(-5\right)\right)y^{4}}{\left(y^{5}\right)^{2}}
Συνδυάστε όμοιους όρους.
-\frac{-5y^{4}}{\left(y^{5}\right)^{2}}
Αφαιρέστε 5 από 5.
-\frac{-5y^{4}}{y^{5\times 2}}
Για να υψώσετε σε δύναμη έναν αριθμό που είναι υψωμένος σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες.
\frac{\left(-\left(-5\right)\right)y^{4}}{y^{10}}
Πολλαπλασιάστε το 5 επί 2.
\left(-\frac{-5}{1}\right)y^{4-10}
Για να διαιρέσετε δυνάμεις με την ίδια βάση, αφαιρέστε τον εκθέτη του παρονομαστή από τον εκθέτη του αριθμητή.
5y^{-6}
Κάντε την αριθμητική πράξη.