Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

2\left(x+1\right)+2\left(x^{2}+1\right)\left(-\frac{1}{2}\right)=0
Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το 2\left(x^{2}+1\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των x^{2}+1,2.
2x+2+2\left(x^{2}+1\right)\left(-\frac{1}{2}\right)=0
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2 με το x+1.
2x+2-\left(x^{2}+1\right)=0
Πολλαπλασιάστε 2 και -\frac{1}{2} για να λάβετε -1.
2x+2-x^{2}-1=0
Για να βρείτε τον αντίθετο του x^{2}+1, βρείτε τον αντίθετο κάθε όρου.
2x+1-x^{2}=0
Αφαιρέστε 1 από 2 για να λάβετε 1.
-x^{2}+2x+1=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)}}{2\left(-1\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -1, το b με 2 και το c με 1 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)}}{2\left(-1\right)}
Υψώστε το 2 στο τετράγωνο.
x=\frac{-2±\sqrt{4+4}}{2\left(-1\right)}
Πολλαπλασιάστε το -4 επί -1.
x=\frac{-2±\sqrt{8}}{2\left(-1\right)}
Προσθέστε το 4 και το 4.
x=\frac{-2±2\sqrt{2}}{2\left(-1\right)}
Λάβετε την τετραγωνική ρίζα του 8.
x=\frac{-2±2\sqrt{2}}{-2}
Πολλαπλασιάστε το 2 επί -1.
x=\frac{2\sqrt{2}-2}{-2}
Λύστε τώρα την εξίσωση x=\frac{-2±2\sqrt{2}}{-2} όταν το ± είναι συν. Προσθέστε το -2 και το 2\sqrt{2}.
x=1-\sqrt{2}
Διαιρέστε το -2+2\sqrt{2} με το -2.
x=\frac{-2\sqrt{2}-2}{-2}
Λύστε τώρα την εξίσωση x=\frac{-2±2\sqrt{2}}{-2} όταν το ± είναι μείον. Αφαιρέστε 2\sqrt{2} από -2.
x=\sqrt{2}+1
Διαιρέστε το -2-2\sqrt{2} με το -2.
x=1-\sqrt{2} x=\sqrt{2}+1
Η εξίσωση έχει πλέον λυθεί.
2\left(x+1\right)+2\left(x^{2}+1\right)\left(-\frac{1}{2}\right)=0
Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το 2\left(x^{2}+1\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των x^{2}+1,2.
2x+2+2\left(x^{2}+1\right)\left(-\frac{1}{2}\right)=0
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2 με το x+1.
2x+2-\left(x^{2}+1\right)=0
Πολλαπλασιάστε 2 και -\frac{1}{2} για να λάβετε -1.
2x+2-x^{2}-1=0
Για να βρείτε τον αντίθετο του x^{2}+1, βρείτε τον αντίθετο κάθε όρου.
2x+1-x^{2}=0
Αφαιρέστε 1 από 2 για να λάβετε 1.
2x-x^{2}=-1
Αφαιρέστε 1 και από τις δύο πλευρές. Το υπόλοιπο της αφαίρεσης οποιουδήποτε αριθμού από το μηδέν ισούται με τον αντίστοιχο αρνητικό αριθμό.
-x^{2}+2x=-1
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{1}{-1}
Διαιρέστε και τις δύο πλευρές με -1.
x^{2}+\frac{2}{-1}x=-\frac{1}{-1}
Η διαίρεση με το -1 αναιρεί τον πολλαπλασιασμό με το -1.
x^{2}-2x=-\frac{1}{-1}
Διαιρέστε το 2 με το -1.
x^{2}-2x=1
Διαιρέστε το -1 με το -1.
x^{2}-2x+1=1+1
Διαιρέστε το -2, τον συντελεστή του όρου x, με το 2 για να λάβετε -1. Στη συνέχεια, προσθέστε το τετράγωνο του -1 και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-2x+1=2
Προσθέστε το 1 και το 1.
\left(x-1\right)^{2}=2
Παραγον x^{2}-2x+1. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-1=\sqrt{2} x-1=-\sqrt{2}
Απλοποιήστε.
x=\sqrt{2}+1 x=1-\sqrt{2}
Προσθέστε 1 και στις δύο πλευρές της εξίσωσης.