Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{5}{\sqrt{6}-2\sqrt{2}}
Παραγοντοποιήστε με το 8=2^{2}\times 2. Γράψτε ξανά την τετραγωνική ρίζα του προϊόντος \sqrt{2^{2}\times 2} ως το γινόμενο των τετράγωνου ρίζες \sqrt{2^{2}}\sqrt{2}. Λάβετε την τετραγωνική ρίζα του 2^{2}.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{\left(\sqrt{6}-2\sqrt{2}\right)\left(\sqrt{6}+2\sqrt{2}\right)}
Ρητοποιήστε τον παρονομαστή \frac{5}{\sqrt{6}-2\sqrt{2}} πολλαπλασιάζοντας τον αριθμητή και τον παρονομαστή με \sqrt{6}+2\sqrt{2}.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}
Υπολογίστε \left(\sqrt{6}-2\sqrt{2}\right)\left(\sqrt{6}+2\sqrt{2}\right). Ο πολλαπλασιασμός μπορεί να μετατραπεί σε διαφορά τετραγώνων χρησιμοποιώντας τον κανόνα: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-\left(-2\sqrt{2}\right)^{2}}
Το τετράγωνο του \sqrt{6} είναι 6.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Αναπτύξτε το \left(-2\sqrt{2}\right)^{2}.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-4\left(\sqrt{2}\right)^{2}}
Υπολογίστε το -2στη δύναμη του 2 και λάβετε 4.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-4\times 2}
Το τετράγωνο του \sqrt{2} είναι 2.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-8}
Πολλαπλασιάστε 4 και 2 για να λάβετε 8.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{-2}
Αφαιρέστε 8 από 6 για να λάβετε -2.
\frac{5\sqrt{6}+10\sqrt{2}}{-2}
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 5 με το \sqrt{6}+2\sqrt{2}.