Υπολογισμός
\frac{2x+3}{2x+1}
Διαφόριση ως προς x
-\frac{4}{\left(2x+1\right)^{2}}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1}
Παραγοντοποιήστε με το 1+x-2x^{2}.
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(-x+1\right)\left(2x+1\right) και x-1 είναι \left(x-1\right)\left(2x+1\right). Πολλαπλασιάστε το \frac{3}{\left(-x+1\right)\left(2x+1\right)} επί \frac{-1}{-1}. Πολλαπλασιάστε το \frac{x}{x-1} επί \frac{2x+1}{2x+1}.
\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
Από τη στιγμή που οι αριθμοί \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} και \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}
Κάντε τους πολλαπλασιασμούς στο 3\left(-1\right)+x\left(2x+1\right).
\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{2x+3}{2x+1}
Απαλείψτε το x-1 στον αριθμητή και παρονομαστή.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1})
Παραγοντοποιήστε με το 1+x-2x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(-x+1\right)\left(2x+1\right) και x-1 είναι \left(x-1\right)\left(2x+1\right). Πολλαπλασιάστε το \frac{3}{\left(-x+1\right)\left(2x+1\right)} επί \frac{-1}{-1}. Πολλαπλασιάστε το \frac{x}{x-1} επί \frac{2x+1}{2x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
Από τη στιγμή που οι αριθμοί \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} και \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)})
Κάντε τους πολλαπλασιασμούς στο 3\left(-1\right)+x\left(2x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)})
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3}{2x+1})
Απαλείψτε το x-1 στον αριθμητή και παρονομαστή.
\frac{\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+3)-\left(2x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)}{\left(2x^{1}+1\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(2x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+3\right)\times 2x^{1-1}}{\left(2x^{1}+1\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(2x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+3\right)\times 2x^{0}}{\left(2x^{1}+1\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{2x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}\times 2x^{0}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Αναπτύξτε χρησιμοποιώντας την επιμεριστική ιδιότητα.
\frac{2\times 2x^{1}+2x^{0}-\left(2\times 2x^{1}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{4x^{1}+2x^{0}-\left(4x^{1}+6x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{4x^{1}+2x^{0}-4x^{1}-6x^{0}}{\left(2x^{1}+1\right)^{2}}
Καταργήστε τις περιττές παρενθέσεις.
\frac{\left(4-4\right)x^{1}+\left(2-6\right)x^{0}}{\left(2x^{1}+1\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{-4x^{0}}{\left(2x^{1}+1\right)^{2}}
Αφαίρεση 4 από 4 και 6 από 2.
\frac{-4x^{0}}{\left(2x+1\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{-4}{\left(2x+1\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}