Λύση ως προς x
x=-\frac{2}{7}\approx -0,285714286
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\left(15x+2\right)\left(2x+3\right)=\left(5x-1\right)\left(6x+4\right)
Η μεταβλητή x δεν μπορεί να είναι ίση με οποιαδήποτε από τις τιμές -\frac{2}{15},\frac{1}{5} επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το \left(5x-1\right)\left(15x+2\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των 5x-1,15x+2.
30x^{2}+49x+6=\left(5x-1\right)\left(6x+4\right)
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 15x+2 με το 2x+3 και συνδυάστε τους παρόμοιους όρους.
30x^{2}+49x+6=30x^{2}+14x-4
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 5x-1 με το 6x+4 και συνδυάστε τους παρόμοιους όρους.
30x^{2}+49x+6-30x^{2}=14x-4
Αφαιρέστε 30x^{2} και από τις δύο πλευρές.
49x+6=14x-4
Συνδυάστε το 30x^{2} και το -30x^{2} για να λάβετε 0.
49x+6-14x=-4
Αφαιρέστε 14x και από τις δύο πλευρές.
35x+6=-4
Συνδυάστε το 49x και το -14x για να λάβετε 35x.
35x=-4-6
Αφαιρέστε 6 και από τις δύο πλευρές.
35x=-10
Αφαιρέστε 6 από -4 για να λάβετε -10.
x=\frac{-10}{35}
Διαιρέστε και τις δύο πλευρές με 35.
x=-\frac{2}{7}
Μειώστε το κλάσμα \frac{-10}{35} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 5.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}