Υπολογισμός
\frac{3x-2}{x\left(x+1\right)}
Διαφόριση ως προς x
\frac{2+4x-3x^{2}}{\left(x\left(x+1\right)\right)^{2}}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}-\frac{4}{x}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x και x+1 είναι x\left(x+1\right). Πολλαπλασιάστε το \frac{2}{x} επί \frac{x+1}{x+1}. Πολλαπλασιάστε το \frac{5}{x+1} επί \frac{x}{x}.
\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}-\frac{4}{x}
Από τη στιγμή που οι αριθμοί \frac{2\left(x+1\right)}{x\left(x+1\right)} και \frac{5x}{x\left(x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{2x+2+5x}{x\left(x+1\right)}-\frac{4}{x}
Κάντε τους πολλαπλασιασμούς στο 2\left(x+1\right)+5x.
\frac{7x+2}{x\left(x+1\right)}-\frac{4}{x}
Συνδυάστε παρόμοιους όρους στο 2x+2+5x.
\frac{7x+2}{x\left(x+1\right)}-\frac{4\left(x+1\right)}{x\left(x+1\right)}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x\left(x+1\right) και x είναι x\left(x+1\right). Πολλαπλασιάστε το \frac{4}{x} επί \frac{x+1}{x+1}.
\frac{7x+2-4\left(x+1\right)}{x\left(x+1\right)}
Από τη στιγμή που οι αριθμοί \frac{7x+2}{x\left(x+1\right)} και \frac{4\left(x+1\right)}{x\left(x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{7x+2-4x-4}{x\left(x+1\right)}
Κάντε τους πολλαπλασιασμούς στο 7x+2-4\left(x+1\right).
\frac{3x-2}{x\left(x+1\right)}
Συνδυάστε παρόμοιους όρους στο 7x+2-4x-4.
\frac{3x-2}{x^{2}+x}
Αναπτύξτε το x\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}-\frac{4}{x})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x και x+1 είναι x\left(x+1\right). Πολλαπλασιάστε το \frac{2}{x} επί \frac{x+1}{x+1}. Πολλαπλασιάστε το \frac{5}{x+1} επί \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}-\frac{4}{x})
Από τη στιγμή που οι αριθμοί \frac{2\left(x+1\right)}{x\left(x+1\right)} και \frac{5x}{x\left(x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+5x}{x\left(x+1\right)}-\frac{4}{x})
Κάντε τους πολλαπλασιασμούς στο 2\left(x+1\right)+5x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2}{x\left(x+1\right)}-\frac{4}{x})
Συνδυάστε παρόμοιους όρους στο 2x+2+5x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2}{x\left(x+1\right)}-\frac{4\left(x+1\right)}{x\left(x+1\right)})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x\left(x+1\right) και x είναι x\left(x+1\right). Πολλαπλασιάστε το \frac{4}{x} επί \frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2-4\left(x+1\right)}{x\left(x+1\right)})
Από τη στιγμή που οι αριθμοί \frac{7x+2}{x\left(x+1\right)} και \frac{4\left(x+1\right)}{x\left(x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2-4x-4}{x\left(x+1\right)})
Κάντε τους πολλαπλασιασμούς στο 7x+2-4\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-2}{x\left(x+1\right)})
Συνδυάστε παρόμοιους όρους στο 7x+2-4x-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-2}{x^{2}+x})
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x με το x+1.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}-2)-\left(3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{2}+x^{1}\right)\times 3x^{1-1}-\left(3x^{1}-2\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)\times 3x^{0}-\left(3x^{1}-2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Απλοποιήστε.
\frac{x^{2}\times 3x^{0}+x^{1}\times 3x^{0}-\left(3x^{1}-2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Πολλαπλασιάστε το x^{2}+x^{1} επί 3x^{0}.
\frac{x^{2}\times 3x^{0}+x^{1}\times 3x^{0}-\left(3x^{1}\times 2x^{1}+3x^{1}x^{0}-2\times 2x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Πολλαπλασιάστε το 3x^{1}-2 επί 2x^{1}+x^{0}.
\frac{3x^{2}+3x^{1}-\left(3\times 2x^{1+1}+3x^{1}-2\times 2x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{3x^{2}+3x^{1}-\left(6x^{2}+3x^{1}-4x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Απλοποιήστε.
\frac{-3x^{2}+4x^{1}+2x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{-3x^{2}+4x+2x^{0}}{\left(x^{2}+x\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{-3x^{2}+4x+2\times 1}{\left(x^{2}+x\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.
\frac{-3x^{2}+4x+2}{\left(x^{2}+x\right)^{2}}
Για κάθε όρο t, t\times 1=t και 1t=t.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}