Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x (complex solution)
Tick mark Image
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Πολλαπλασιάστε x+1 και x+1 για να λάβετε \left(x+1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Πολλαπλασιάστε x-1 και x-1 για να λάβετε \left(x-1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Πολλαπλασιάστε x^{2}+1 και x^{2}+1 για να λάβετε \left(x^{2}+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a+b\right)^{2}=a^{2}+2ab+b^{2} για να αναπτύξετε το \left(x+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(x-1\right)^{2}.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το \frac{1}{4} με το x^{2}+2x+1.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το \frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} με το x^{2}-2x+1 και συνδυάστε τους παρόμοιους όρους.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Συνδυάστε το -\frac{1}{2}x^{2} και το x^{2} για να λάβετε \frac{1}{2}x^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a+b\right)^{2}=a^{2}+2ab+b^{2} για να αναπτύξετε το \left(x^{2}+1\right)^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το \frac{1}{4} με το x^{4}+2x^{2}+1.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Αφαιρέστε \frac{1}{4}x^{4} και από τις δύο πλευρές.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Συνδυάστε το \frac{1}{4}x^{4} και το -\frac{1}{4}x^{4} για να λάβετε 0.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Αφαιρέστε \frac{1}{2}x^{2} και από τις δύο πλευρές.
\frac{1}{4}=\frac{1}{4}
Συνδυάστε το \frac{1}{2}x^{2} και το -\frac{1}{2}x^{2} για να λάβετε 0.
\text{true}
Σύγκριση με:\frac{1}{4} και \frac{1}{4}.
x\in \mathrm{C}
Αυτό είναι αληθές για οποιοδήποτε x.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Πολλαπλασιάστε x+1 και x+1 για να λάβετε \left(x+1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Πολλαπλασιάστε x-1 και x-1 για να λάβετε \left(x-1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Πολλαπλασιάστε x^{2}+1 και x^{2}+1 για να λάβετε \left(x^{2}+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a+b\right)^{2}=a^{2}+2ab+b^{2} για να αναπτύξετε το \left(x+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(x-1\right)^{2}.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το \frac{1}{4} με το x^{2}+2x+1.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το \frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} με το x^{2}-2x+1 και συνδυάστε τους παρόμοιους όρους.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Συνδυάστε το -\frac{1}{2}x^{2} και το x^{2} για να λάβετε \frac{1}{2}x^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a+b\right)^{2}=a^{2}+2ab+b^{2} για να αναπτύξετε το \left(x^{2}+1\right)^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Για να υψώσετε μια δύναμη σε μια άλλη δύναμη, πολλαπλασιάστε τους εκθέτες. Πολλαπλασιάστε τον αριθμό 2 με τον αριθμό 2 για να λάβετε τον αριθμό 4.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το \frac{1}{4} με το x^{4}+2x^{2}+1.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Αφαιρέστε \frac{1}{4}x^{4} και από τις δύο πλευρές.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Συνδυάστε το \frac{1}{4}x^{4} και το -\frac{1}{4}x^{4} για να λάβετε 0.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Αφαιρέστε \frac{1}{2}x^{2} και από τις δύο πλευρές.
\frac{1}{4}=\frac{1}{4}
Συνδυάστε το \frac{1}{2}x^{2} και το -\frac{1}{2}x^{2} για να λάβετε 0.
\text{true}
Σύγκριση με:\frac{1}{4} και \frac{1}{4}.
x\in \mathrm{R}
Αυτό είναι αληθές για οποιοδήποτε x.