Λύση ως προς y
y=1
y=0
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
y^{2}-y=0
Η μεταβλητή y δεν μπορεί να είναι ίση με -3 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με y+3.
y\left(y-1\right)=0
Παραγοντοποιήστε το y.
y=0 y=1
Για να βρείτε λύσεις εξίσωσης, να λύσετε y=0 και y-1=0.
y^{2}-y=0
Η μεταβλητή y δεν μπορεί να είναι ίση με -3 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με y+3.
y=\frac{-\left(-1\right)±\sqrt{1}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -1 και το c με 0 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±1}{2}
Λάβετε την τετραγωνική ρίζα του 1.
y=\frac{1±1}{2}
Το αντίθετο ενός αριθμού -1 είναι 1.
y=\frac{2}{2}
Λύστε τώρα την εξίσωση y=\frac{1±1}{2} όταν το ± είναι συν. Προσθέστε το 1 και το 1.
y=1
Διαιρέστε το 2 με το 2.
y=\frac{0}{2}
Λύστε τώρα την εξίσωση y=\frac{1±1}{2} όταν το ± είναι μείον. Αφαιρέστε 1 από 1.
y=0
Διαιρέστε το 0 με το 2.
y=1 y=0
Η εξίσωση έχει πλέον λυθεί.
y^{2}-y=0
Η μεταβλητή y δεν μπορεί να είναι ίση με -3 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με y+3.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Διαιρέστε το -1, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{1}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{1}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
y^{2}-y+\frac{1}{4}=\frac{1}{4}
Υψώστε το -\frac{1}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}
Παραγον y^{2}-y+\frac{1}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
y-\frac{1}{2}=\frac{1}{2} y-\frac{1}{2}=-\frac{1}{2}
Απλοποιήστε.
y=1 y=0
Προσθέστε \frac{1}{2} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}