Υπολογισμός
\frac{x^{2}}{x^{2}-1}
Διαφόριση ως προς x
-\frac{2x}{\left(x^{2}-1\right)^{2}}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{x}{\frac{xx}{x}-\frac{1}{x}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το x επί \frac{x}{x}.
\frac{x}{\frac{xx-1}{x}}
Από τη στιγμή που οι αριθμοί \frac{xx}{x} και \frac{1}{x} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{x}{\frac{x^{2}-1}{x}}
Κάντε τους πολλαπλασιασμούς στο xx-1.
\frac{xx}{x^{2}-1}
Διαιρέστε το x με το \frac{x^{2}-1}{x}, πολλαπλασιάζοντας το x με τον αντίστροφο του \frac{x^{2}-1}{x}.
\frac{x^{2}}{x^{2}-1}
Πολλαπλασιάστε x και x για να λάβετε x^{2}.
\frac{\left(x^{1}-\frac{1}{x}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-\frac{1}{x})}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{1-1}-x^{1}\left(x^{1-1}-\left(-x^{-1-1}\right)\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Απλοποιήστε.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Πολλαπλασιάστε το x^{1}-\frac{1}{x} επί x^{0}.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-\left(x^{1}x^{0}+x^{1}x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Πολλαπλασιάστε το x^{1} επί x^{0}+x^{-2}.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+x^{1-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+\frac{1}{x}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Απλοποιήστε.
\frac{-2\times \frac{1}{x}}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{-2\times \frac{1}{x}}{\left(x-\frac{1}{x}\right)^{2}}
Για κάθε όρο t, t^{1}=t.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}