Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{x}{\frac{4}{x^{2}}-\frac{x^{2}}{x^{2}}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 1 επί \frac{x^{2}}{x^{2}}.
\frac{x}{\frac{4-x^{2}}{x^{2}}}
Από τη στιγμή που οι αριθμοί \frac{4}{x^{2}} και \frac{x^{2}}{x^{2}} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{xx^{2}}{4-x^{2}}
Διαιρέστε το x με το \frac{4-x^{2}}{x^{2}}, πολλαπλασιάζοντας το x με τον αντίστροφο του \frac{4-x^{2}}{x^{2}}.
\frac{x^{3}}{4-x^{2}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 1 και τον αριθμό 2 για να λάβετε τον αριθμό 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\frac{4}{x^{2}}-\frac{x^{2}}{x^{2}}})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 1 επί \frac{x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\frac{4-x^{2}}{x^{2}}})
Από τη στιγμή που οι αριθμοί \frac{4}{x^{2}} και \frac{x^{2}}{x^{2}} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{xx^{2}}{4-x^{2}})
Διαιρέστε το x με το \frac{4-x^{2}}{x^{2}}, πολλαπλασιάζοντας το x με τον αντίστροφο του \frac{4-x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}}{4-x^{2}})
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 1 και τον αριθμό 2 για να λάβετε τον αριθμό 3.
\frac{\left(-x^{2}+4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})-x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+4)}{\left(-x^{2}+4\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(-x^{2}+4\right)\times 3x^{3-1}-x^{3}\times 2\left(-1\right)x^{2-1}}{\left(-x^{2}+4\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(-x^{2}+4\right)\times 3x^{2}-x^{3}\left(-2\right)x^{1}}{\left(-x^{2}+4\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{-x^{2}\times 3x^{2}+4\times 3x^{2}-x^{3}\left(-2\right)x^{1}}{\left(-x^{2}+4\right)^{2}}
Αναπτύξτε χρησιμοποιώντας την επιμεριστική ιδιότητα.
\frac{-3x^{2+2}+4\times 3x^{2}-\left(-2x^{3+1}\right)}{\left(-x^{2}+4\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{-3x^{4}+12x^{2}-\left(-2x^{4}\right)}{\left(-x^{2}+4\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{\left(-3-\left(-2\right)\right)x^{4}+12x^{2}}{\left(-x^{2}+4\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{-x^{4}+12x^{2}}{\left(-x^{2}+4\right)^{2}}
Αφαιρέστε -2 από -3.
\frac{x^{2}\left(-x^{2}+12x^{0}\right)}{\left(-x^{2}+4\right)^{2}}
Παραγοντοποιήστε το x^{2}.
\frac{x^{2}\left(-x^{2}+12\times 1\right)}{\left(-x^{2}+4\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.
\frac{x^{2}\left(-x^{2}+12\right)}{\left(-x^{2}+4\right)^{2}}
Για κάθε όρο t, t\times 1=t και 1t=t.