Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{2}-3x-4=0
Η μεταβλητή x δεν μπορεί να είναι ίση με 4 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x-4.
a+b=-3 ab=-4
Για να λύσετε την εξίσωση, παραγοντοποιήστε x^{2}-3x-4 χρησιμοποιώντας τον τύπο x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-4 2,-2
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -4.
1-4=-3 2-2=0
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-4 b=1
Η λύση είναι το ζεύγος που δίνει άθροισμα -3.
\left(x-4\right)\left(x+1\right)
Επανεγγραφή παραγοντοποιηθεί παράστασης \left(x+a\right)\left(x+b\right) χρησιμοποιώντας τις τιμές που έχουν ληφθεί.
x=4 x=-1
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-4=0 και x+1=0.
x=-1
Η μεταβλητή x δεν μπορεί να είναι ίση με 4.
x^{2}-3x-4=0
Η μεταβλητή x δεν μπορεί να είναι ίση με 4 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x-4.
a+b=-3 ab=1\left(-4\right)=-4
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως x^{2}+ax+bx-4. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-4 2,-2
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -4.
1-4=-3 2-2=0
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-4 b=1
Η λύση είναι το ζεύγος που δίνει άθροισμα -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Γράψτε πάλι το x^{2}-3x-4 ως \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Παραγοντοποιήστε το x στην εξίσωση x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Παραγοντοποιήστε τον κοινό όρο x-4 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=4 x=-1
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-4=0 και x+1=0.
x=-1
Η μεταβλητή x δεν μπορεί να είναι ίση με 4.
x^{2}-3x-4=0
Η μεταβλητή x δεν μπορεί να είναι ίση με 4 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x-4.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -3 και το c με -4 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
Υψώστε το -3 στο τετράγωνο.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
Πολλαπλασιάστε το -4 επί -4.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
Προσθέστε το 9 και το 16.
x=\frac{-\left(-3\right)±5}{2}
Λάβετε την τετραγωνική ρίζα του 25.
x=\frac{3±5}{2}
Το αντίθετο ενός αριθμού -3 είναι 3.
x=\frac{8}{2}
Λύστε τώρα την εξίσωση x=\frac{3±5}{2} όταν το ± είναι συν. Προσθέστε το 3 και το 5.
x=4
Διαιρέστε το 8 με το 2.
x=-\frac{2}{2}
Λύστε τώρα την εξίσωση x=\frac{3±5}{2} όταν το ± είναι μείον. Αφαιρέστε 5 από 3.
x=-1
Διαιρέστε το -2 με το 2.
x=4 x=-1
Η εξίσωση έχει πλέον λυθεί.
x=-1
Η μεταβλητή x δεν μπορεί να είναι ίση με 4.
x^{2}-3x-4=0
Η μεταβλητή x δεν μπορεί να είναι ίση με 4 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x-4.
x^{2}-3x=4
Προσθήκη 4 και στις δύο πλευρές. Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Διαιρέστε το -3, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{3}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{3}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Υψώστε το -\frac{3}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Προσθέστε το 4 και το \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Παραγον x^{2}-3x+\frac{9}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Απλοποιήστε.
x=4 x=-1
Προσθέστε \frac{3}{2} και στις δύο πλευρές της εξίσωσης.
x=-1
Η μεταβλητή x δεν μπορεί να είναι ίση με 4.