Λύση ως προς x
x=4
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\left(x+2\right)\left(x+2\right)+x\left(x-1\right)=2x\left(x+2\right)
Η μεταβλητή x δεν μπορεί να είναι ίση με οποιαδήποτε από τις τιμές -2,0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το x\left(x+2\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των x,x+2.
\left(x+2\right)^{2}+x\left(x-1\right)=2x\left(x+2\right)
Πολλαπλασιάστε x+2 και x+2 για να λάβετε \left(x+2\right)^{2}.
x^{2}+4x+4+x\left(x-1\right)=2x\left(x+2\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a+b\right)^{2}=a^{2}+2ab+b^{2} για να αναπτύξετε το \left(x+2\right)^{2}.
x^{2}+4x+4+x^{2}-x=2x\left(x+2\right)
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x με το x-1.
2x^{2}+4x+4-x=2x\left(x+2\right)
Συνδυάστε το x^{2} και το x^{2} για να λάβετε 2x^{2}.
2x^{2}+3x+4=2x\left(x+2\right)
Συνδυάστε το 4x και το -x για να λάβετε 3x.
2x^{2}+3x+4=2x^{2}+4x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x με το x+2.
2x^{2}+3x+4-2x^{2}=4x
Αφαιρέστε 2x^{2} και από τις δύο πλευρές.
3x+4=4x
Συνδυάστε το 2x^{2} και το -2x^{2} για να λάβετε 0.
3x+4-4x=0
Αφαιρέστε 4x και από τις δύο πλευρές.
-x+4=0
Συνδυάστε το 3x και το -4x για να λάβετε -x.
-x=-4
Αφαιρέστε 4 και από τις δύο πλευρές. Το υπόλοιπο της αφαίρεσης οποιουδήποτε αριθμού από το μηδέν ισούται με τον αντίστοιχο αρνητικό αριθμό.
x=4
Πολλαπλασιάστε και τις δύο πλευρές με -1.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}