Λύση ως προς x
x=6
x=-6
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x+16=\left(x-4\right)x+\left(x-4\right)\times 5
Η μεταβλητή x δεν μπορεί να είναι ίση με 4 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x-4.
x+16=x^{2}-4x+\left(x-4\right)\times 5
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x-4 με το x.
x+16=x^{2}-4x+5x-20
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x-4 με το 5.
x+16=x^{2}+x-20
Συνδυάστε το -4x και το 5x για να λάβετε x.
x+16-x^{2}=x-20
Αφαιρέστε x^{2} και από τις δύο πλευρές.
x+16-x^{2}-x=-20
Αφαιρέστε x και από τις δύο πλευρές.
16-x^{2}=-20
Συνδυάστε το x και το -x για να λάβετε 0.
-x^{2}=-20-16
Αφαιρέστε 16 και από τις δύο πλευρές.
-x^{2}=-36
Αφαιρέστε 16 από -20 για να λάβετε -36.
x^{2}=\frac{-36}{-1}
Διαιρέστε και τις δύο πλευρές με -1.
x^{2}=36
Το κλάσμα \frac{-36}{-1} μπορεί να απλοποιηθεί σε 36 , καταργώντας το αρνητικό πρόσημο από τον αριθμητή και τον παρονομαστή.
x=6 x=-6
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+16=\left(x-4\right)x+\left(x-4\right)\times 5
Η μεταβλητή x δεν μπορεί να είναι ίση με 4 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x-4.
x+16=x^{2}-4x+\left(x-4\right)\times 5
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x-4 με το x.
x+16=x^{2}-4x+5x-20
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x-4 με το 5.
x+16=x^{2}+x-20
Συνδυάστε το -4x και το 5x για να λάβετε x.
x+16-x^{2}=x-20
Αφαιρέστε x^{2} και από τις δύο πλευρές.
x+16-x^{2}-x=-20
Αφαιρέστε x και από τις δύο πλευρές.
16-x^{2}=-20
Συνδυάστε το x και το -x για να λάβετε 0.
16-x^{2}+20=0
Προσθήκη 20 και στις δύο πλευρές.
36-x^{2}=0
Προσθέστε 16 και 20 για να λάβετε 36.
-x^{2}+36=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή, με έναν όρο x^{2} αλλά χωρίς όρο x, εξακολουθούν να μπορούν να λυθούν μέσω του τετραγωνικού τύπου, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, από τη στιγμή που τίθενται στην τυπική μορφή: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 36}}{2\left(-1\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -1, το b με 0 και το c με 36 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 36}}{2\left(-1\right)}
Υψώστε το 0 στο τετράγωνο.
x=\frac{0±\sqrt{4\times 36}}{2\left(-1\right)}
Πολλαπλασιάστε το -4 επί -1.
x=\frac{0±\sqrt{144}}{2\left(-1\right)}
Πολλαπλασιάστε το 4 επί 36.
x=\frac{0±12}{2\left(-1\right)}
Λάβετε την τετραγωνική ρίζα του 144.
x=\frac{0±12}{-2}
Πολλαπλασιάστε το 2 επί -1.
x=-6
Λύστε τώρα την εξίσωση x=\frac{0±12}{-2} όταν το ± είναι συν. Διαιρέστε το 12 με το -2.
x=6
Λύστε τώρα την εξίσωση x=\frac{0±12}{-2} όταν το ± είναι μείον. Διαιρέστε το -12 με το -2.
x=-6 x=6
Η εξίσωση έχει πλέον λυθεί.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}