Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς a
Tick mark Image
Λύση ως προς b
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}+f\frac{\mathrm{d}(e)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}
Αφαιρέστε f\frac{\mathrm{d}(e)}{\mathrm{d}t} και από τις δύο πλευρές.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}+b\frac{\mathrm{d}(h)}{\mathrm{d}t}
Προσθήκη b\frac{\mathrm{d}(h)}{\mathrm{d}t} και στις δύο πλευρές.
-a\frac{\mathrm{d}(g)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}+b\frac{\mathrm{d}(h)}{\mathrm{d}t}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}
Αναδιατάξτε τους όρους.
\text{true}
Η εξίσωση είναι σε τυπική μορφή.
a\in \mathrm{R}
Αυτό είναι αληθές για οποιοδήποτε a.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}+f\frac{\mathrm{d}(e)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}
Αφαιρέστε f\frac{\mathrm{d}(e)}{\mathrm{d}t} και από τις δύο πλευρές.
-b\frac{\mathrm{d}(h)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}+a\frac{\mathrm{d}(g)}{\mathrm{d}t}
Προσθήκη a\frac{\mathrm{d}(g)}{\mathrm{d}t} και στις δύο πλευρές.
\text{true}
Η εξίσωση είναι σε τυπική μορφή.
b\in \mathrm{R}
Αυτό είναι αληθές για οποιοδήποτε b.