Υπολογισμός
a^{4}+a^{3}+a^{2}+2
Διαφόριση ως προς a
a\left(4a^{2}+3a+2\right)
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των a-1 και a+1 είναι \left(a-1\right)\left(a+1\right). Πολλαπλασιάστε το \frac{a^{5}}{a-1} επί \frac{a+1}{a+1}. Πολλαπλασιάστε το \frac{a^{2}}{a+1} επί \frac{a-1}{a-1}.
\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Από τη στιγμή που οι αριθμοί \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} και \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Κάντε τους πολλαπλασιασμούς στο a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(a-1\right)\left(a+1\right) και a-1 είναι \left(a-1\right)\left(a+1\right). Πολλαπλασιάστε το \frac{1}{a-1} επί \frac{a+1}{a+1}.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Από τη στιγμή που οι αριθμοί \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} και \frac{a+1}{\left(a-1\right)\left(a+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Κάντε τους πολλαπλασιασμούς στο a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1}
Απαλείψτε το a-1 στον αριθμητή και παρονομαστή.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1}
Από τη στιγμή που οι αριθμοί \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} και \frac{1}{a+1} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}
Συνδυάστε παρόμοιους όρους στο a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)
Απαλείψτε το a+1 στον αριθμητή και παρονομαστή.
a^{4}+a^{3}+a^{2}+2
Αναπτύξτε την παράσταση.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των a-1 και a+1 είναι \left(a-1\right)\left(a+1\right). Πολλαπλασιάστε το \frac{a^{5}}{a-1} επί \frac{a+1}{a+1}. Πολλαπλασιάστε το \frac{a^{2}}{a+1} επί \frac{a-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Από τη στιγμή που οι αριθμοί \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} και \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Κάντε τους πολλαπλασιασμούς στο a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(a-1\right)\left(a+1\right) και a-1 είναι \left(a-1\right)\left(a+1\right). Πολλαπλασιάστε το \frac{1}{a-1} επί \frac{a+1}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Από τη στιγμή που οι αριθμοί \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} και \frac{a+1}{\left(a-1\right)\left(a+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Κάντε τους πολλαπλασιασμούς στο a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1})
Απαλείψτε το a-1 στον αριθμητή και παρονομαστή.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1})
Από τη στιγμή που οι αριθμοί \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} και \frac{1}{a+1} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1})
Συνδυάστε παρόμοιους όρους στο a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1})
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right))
Απαλείψτε το a+1 στον αριθμητή και παρονομαστή.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3}+a^{2}+2)
Αναπτύξτε την παράσταση.
4a^{4-1}+3a^{3-1}+2a^{2-1}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
4a^{3}+3a^{3-1}+2a^{2-1}
Αφαιρέστε 1 από 4.
4a^{3}+3a^{2}+2a^{2-1}
Αφαιρέστε 1 από 3.
4a^{3}+3a^{2}+2a^{1}
Αφαιρέστε 1 από 2.
4a^{3}+3a^{2}+2a
Για κάθε όρο t, t^{1}=t.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}