Λύση ως προς x
x = -\frac{155}{16} = -9\frac{11}{16} = -9,6875
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{6}{5}x+\frac{7}{16}-x=-\frac{3}{2}
Αφαιρέστε x και από τις δύο πλευρές.
\frac{1}{5}x+\frac{7}{16}=-\frac{3}{2}
Συνδυάστε το \frac{6}{5}x και το -x για να λάβετε \frac{1}{5}x.
\frac{1}{5}x=-\frac{3}{2}-\frac{7}{16}
Αφαιρέστε \frac{7}{16} και από τις δύο πλευρές.
\frac{1}{5}x=-\frac{24}{16}-\frac{7}{16}
Το ελάχιστο κοινό πολλαπλάσιο των 2 και 16 είναι 16. Μετατροπή των -\frac{3}{2} και \frac{7}{16} σε κλάσματα με παρονομαστή 16.
\frac{1}{5}x=\frac{-24-7}{16}
Από τη στιγμή που οι αριθμοί -\frac{24}{16} και \frac{7}{16} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{1}{5}x=-\frac{31}{16}
Αφαιρέστε 7 από -24 για να λάβετε -31.
x=-\frac{31}{16}\times 5
Πολλαπλασιάστε και τις δύο πλευρές με 5, το αντίστροφο του \frac{1}{5}.
x=\frac{-31\times 5}{16}
Έκφραση του -\frac{31}{16}\times 5 ως ενιαίου κλάσματος.
x=\frac{-155}{16}
Πολλαπλασιάστε -31 και 5 για να λάβετε -155.
x=-\frac{155}{16}
Το κλάσμα \frac{-155}{16} μπορεί να γραφεί ξανά ως -\frac{155}{16}, αφαιρώντας το αρνητικό πρόσημο.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}