Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{5}{x+3}+\frac{3\left(x+3\right)}{x+3}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 3 επί \frac{x+3}{x+3}.
\frac{5+3\left(x+3\right)}{x+3}
Από τη στιγμή που οι αριθμοί \frac{5}{x+3} και \frac{3\left(x+3\right)}{x+3} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{5+3x+9}{x+3}
Κάντε τους πολλαπλασιασμούς στο 5+3\left(x+3\right).
\frac{14+3x}{x+3}
Συνδυάστε παρόμοιους όρους στο 5+3x+9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+3}+\frac{3\left(x+3\right)}{x+3})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 3 επί \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5+3\left(x+3\right)}{x+3})
Από τη στιγμή που οι αριθμοί \frac{5}{x+3} και \frac{3\left(x+3\right)}{x+3} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5+3x+9}{x+3})
Κάντε τους πολλαπλασιασμούς στο 5+3\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{14+3x}{x+3})
Συνδυάστε παρόμοιους όρους στο 5+3x+9.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+14)-\left(3x^{1}+14\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{1}+3\right)\times 3x^{1-1}-\left(3x^{1}+14\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{1}+3\right)\times 3x^{0}-\left(3x^{1}+14\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{x^{1}\times 3x^{0}+3\times 3x^{0}-\left(3x^{1}x^{0}+14x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Αναπτύξτε χρησιμοποιώντας την επιμεριστική ιδιότητα.
\frac{3x^{1}+3\times 3x^{0}-\left(3x^{1}+14x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{3x^{1}+9x^{0}-\left(3x^{1}+14x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{3x^{1}+9x^{0}-3x^{1}-14x^{0}}{\left(x^{1}+3\right)^{2}}
Καταργήστε τις περιττές παρενθέσεις.
\frac{\left(3-3\right)x^{1}+\left(9-14\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{-5x^{0}}{\left(x^{1}+3\right)^{2}}
Αφαίρεση 3 από 3 και 14 από 9.
\frac{-5x^{0}}{\left(x+3\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{-5}{\left(x+3\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.