Λύση ως προς x
x=4
x=0
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Η μεταβλητή x δεν μπορεί να είναι ίση με -1 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x+1.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x+1 με το x.
4x-1=x^{2}+x-x-1
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x+1 με το -1.
4x-1=x^{2}-1
Συνδυάστε το x και το -x για να λάβετε 0.
4x-1-x^{2}=-1
Αφαιρέστε x^{2} και από τις δύο πλευρές.
4x-1-x^{2}+1=0
Προσθήκη 1 και στις δύο πλευρές.
4x-x^{2}=0
Προσθέστε -1 και 1 για να λάβετε 0.
-x^{2}+4x=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-1\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -1, το b με 4 και το c με 0 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2\left(-1\right)}
Λάβετε την τετραγωνική ρίζα του 4^{2}.
x=\frac{-4±4}{-2}
Πολλαπλασιάστε το 2 επί -1.
x=\frac{0}{-2}
Λύστε τώρα την εξίσωση x=\frac{-4±4}{-2} όταν το ± είναι συν. Προσθέστε το -4 και το 4.
x=0
Διαιρέστε το 0 με το -2.
x=-\frac{8}{-2}
Λύστε τώρα την εξίσωση x=\frac{-4±4}{-2} όταν το ± είναι μείον. Αφαιρέστε 4 από -4.
x=4
Διαιρέστε το -8 με το -2.
x=0 x=4
Η εξίσωση έχει πλέον λυθεί.
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Η μεταβλητή x δεν μπορεί να είναι ίση με -1 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x+1.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x+1 με το x.
4x-1=x^{2}+x-x-1
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x+1 με το -1.
4x-1=x^{2}-1
Συνδυάστε το x και το -x για να λάβετε 0.
4x-1-x^{2}=-1
Αφαιρέστε x^{2} και από τις δύο πλευρές.
4x-x^{2}=-1+1
Προσθήκη 1 και στις δύο πλευρές.
4x-x^{2}=0
Προσθέστε -1 και 1 για να λάβετε 0.
-x^{2}+4x=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=\frac{0}{-1}
Διαιρέστε και τις δύο πλευρές με -1.
x^{2}+\frac{4}{-1}x=\frac{0}{-1}
Η διαίρεση με το -1 αναιρεί τον πολλαπλασιασμό με το -1.
x^{2}-4x=\frac{0}{-1}
Διαιρέστε το 4 με το -1.
x^{2}-4x=0
Διαιρέστε το 0 με το -1.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
Διαιρέστε το -4, τον συντελεστή του όρου x, με το 2 για να λάβετε -2. Στη συνέχεια, προσθέστε το τετράγωνο του -2 και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-4x+4=4
Υψώστε το -2 στο τετράγωνο.
\left(x-2\right)^{2}=4
Παραγον x^{2}-4x+4. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-2=2 x-2=-2
Απλοποιήστε.
x=4 x=0
Προσθέστε 2 και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}