Υπολογισμός
\frac{11}{26}-\frac{23}{26}i\approx 0,423076923-0,884615385i
Πραγματικό τμήμα
\frac{11}{26} = 0,4230769230769231
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1+5i\right)\left(-1-5i\right)}
Πολλαπλασιάστε τόσο τον αριθμητή όσο και τον παρονομαστή με τον μιγαδικό συζυγή του παρονομαστή, -1-5i.
\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1\right)^{2}-5^{2}i^{2}}
Ο πολλαπλασιασμός μπορεί να μετατραπεί σε διαφορά τετραγώνων χρησιμοποιώντας τον κανόνα: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+3i\right)\left(-1-5i\right)}{26}
Εξ ορισμού, το i^{2} είναι -1. Υπολογίστε τον παρονομαστή.
\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)i^{2}}{26}
Πολλαπλασιάστε τους μιγαδικούς αριθμούς 4+3i και -1-5i όπως πολλαπλασιάζετε τα διώνυμα.
\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right)}{26}
Εξ ορισμού, το i^{2} είναι -1.
\frac{-4-20i-3i+15}{26}
Κάντε τους πολλαπλασιασμούς στο 4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right).
\frac{-4+15+\left(-20-3\right)i}{26}
Συνδυάστε τα πραγματικά και τα φανταστικά μέρη: -4-20i-3i+15.
\frac{11-23i}{26}
Κάντε τις προσθέσεις στο -4+15+\left(-20-3\right)i.
\frac{11}{26}-\frac{23}{26}i
Διαιρέστε το 11-23i με το 26 για να λάβετε \frac{11}{26}-\frac{23}{26}i.
Re(\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1+5i\right)\left(-1-5i\right)})
Πολλαπλασιάστε τον αριθμητή και τον παρονομαστή του \frac{4+3i}{-1+5i} με τον μιγαδικό συζυγή του παρονομαστή -1-5i.
Re(\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1\right)^{2}-5^{2}i^{2}})
Ο πολλαπλασιασμός μπορεί να μετατραπεί σε διαφορά τετραγώνων χρησιμοποιώντας τον κανόνα: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+3i\right)\left(-1-5i\right)}{26})
Εξ ορισμού, το i^{2} είναι -1. Υπολογίστε τον παρονομαστή.
Re(\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)i^{2}}{26})
Πολλαπλασιάστε τους μιγαδικούς αριθμούς 4+3i και -1-5i όπως πολλαπλασιάζετε τα διώνυμα.
Re(\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right)}{26})
Εξ ορισμού, το i^{2} είναι -1.
Re(\frac{-4-20i-3i+15}{26})
Κάντε τους πολλαπλασιασμούς στο 4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right).
Re(\frac{-4+15+\left(-20-3\right)i}{26})
Συνδυάστε τα πραγματικά και τα φανταστικά μέρη: -4-20i-3i+15.
Re(\frac{11-23i}{26})
Κάντε τις προσθέσεις στο -4+15+\left(-20-3\right)i.
Re(\frac{11}{26}-\frac{23}{26}i)
Διαιρέστε το 11-23i με το 26 για να λάβετε \frac{11}{26}-\frac{23}{26}i.
\frac{11}{26}
Το πραγματικό μέρος του \frac{11}{26}-\frac{23}{26}i είναι \frac{11}{26}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}