Υπολογισμός
\frac{x-1}{x+4}
Ανάπτυξη
\frac{x-1}{x+4}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{3x^{2}+4x-5}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Παραγοντοποιήστε με το x^{2}+5x+4.
\frac{3x^{2}+4x-5}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(x+1\right)\left(x+4\right) και x+1 είναι \left(x+1\right)\left(x+4\right). Πολλαπλασιάστε το \frac{2x}{x+1} επί \frac{x+4}{x+4}.
\frac{3x^{2}+4x-5-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Από τη στιγμή που οι αριθμοί \frac{3x^{2}+4x-5}{\left(x+1\right)\left(x+4\right)} και \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{3x^{2}+4x-5-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Κάντε τους πολλαπλασιασμούς στο 3x^{2}+4x-5-2x\left(x+4\right).
\frac{x^{2}-4x-5}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Συνδυάστε παρόμοιους όρους στο 3x^{2}+4x-5-2x^{2}-8x.
\frac{\left(x-5\right)\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{x^{2}-4x-5}{\left(x+1\right)\left(x+4\right)}.
\frac{x-5}{x+4}+\frac{4}{x+4}
Απαλείψτε το x+1 στον αριθμητή και παρονομαστή.
\frac{x-5+4}{x+4}
Από τη στιγμή που οι αριθμοί \frac{x-5}{x+4} και \frac{4}{x+4} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{x-1}{x+4}
Συνδυάστε παρόμοιους όρους στο x-5+4.
\frac{3x^{2}+4x-5}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Παραγοντοποιήστε με το x^{2}+5x+4.
\frac{3x^{2}+4x-5}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(x+1\right)\left(x+4\right) και x+1 είναι \left(x+1\right)\left(x+4\right). Πολλαπλασιάστε το \frac{2x}{x+1} επί \frac{x+4}{x+4}.
\frac{3x^{2}+4x-5-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Από τη στιγμή που οι αριθμοί \frac{3x^{2}+4x-5}{\left(x+1\right)\left(x+4\right)} και \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{3x^{2}+4x-5-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Κάντε τους πολλαπλασιασμούς στο 3x^{2}+4x-5-2x\left(x+4\right).
\frac{x^{2}-4x-5}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Συνδυάστε παρόμοιους όρους στο 3x^{2}+4x-5-2x^{2}-8x.
\frac{\left(x-5\right)\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{x^{2}-4x-5}{\left(x+1\right)\left(x+4\right)}.
\frac{x-5}{x+4}+\frac{4}{x+4}
Απαλείψτε το x+1 στον αριθμητή και παρονομαστή.
\frac{x-5+4}{x+4}
Από τη στιγμή που οι αριθμοί \frac{x-5}{x+4} και \frac{4}{x+4} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{x-1}{x+4}
Συνδυάστε παρόμοιους όρους στο x-5+4.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}