\frac { 3 d ^ { 2 } y } { d x ^ { 2 } } + \frac { 10 d y } { d x } - 20 y = 6 x ^ { 2 }
Λύση ως προς d
d=\frac{2x^{4}}{y}+\frac{20x^{2}}{3}-\frac{10x}{3}
\left(x=\frac{1}{2}\text{ or }y\neq -\frac{3x^{3}}{5\left(2x-1\right)}\right)\text{ and }x\neq 0\text{ and }y\neq 0
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}