Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{3}{x-1}-\frac{4\left(x-1\right)}{x-1}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 4 επί \frac{x-1}{x-1}.
\frac{3-4\left(x-1\right)}{x-1}
Από τη στιγμή που οι αριθμοί \frac{3}{x-1} και \frac{4\left(x-1\right)}{x-1} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{3-4x+4}{x-1}
Κάντε τους πολλαπλασιασμούς στο 3-4\left(x-1\right).
\frac{7-4x}{x-1}
Συνδυάστε παρόμοιους όρους στο 3-4x+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{x-1}-\frac{4\left(x-1\right)}{x-1})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 4 επί \frac{x-1}{x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3-4\left(x-1\right)}{x-1})
Από τη στιγμή που οι αριθμοί \frac{3}{x-1} και \frac{4\left(x-1\right)}{x-1} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3-4x+4}{x-1})
Κάντε τους πολλαπλασιασμούς στο 3-4\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7-4x}{x-1})
Συνδυάστε παρόμοιους όρους στο 3-4x+4.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{1}+7)-\left(-4x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{1}-1\right)\left(-4\right)x^{1-1}-\left(-4x^{1}+7\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{1}-1\right)\left(-4\right)x^{0}-\left(-4x^{1}+7\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{x^{1}\left(-4\right)x^{0}-\left(-4x^{0}\right)-\left(-4x^{1}x^{0}+7x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Αναπτύξτε χρησιμοποιώντας την επιμεριστική ιδιότητα.
\frac{-4x^{1}-\left(-4x^{0}\right)-\left(-4x^{1}+7x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{-4x^{1}+4x^{0}-\left(-4x^{1}+7x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{-4x^{1}+4x^{0}-\left(-4x^{1}\right)-7x^{0}}{\left(x^{1}-1\right)^{2}}
Καταργήστε τις περιττές παρενθέσεις.
\frac{\left(-4-\left(-4\right)\right)x^{1}+\left(4-7\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{-3x^{0}}{\left(x^{1}-1\right)^{2}}
Αφαίρεση -4 από -4 και 7 από 4.
\frac{-3x^{0}}{\left(x-1\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{-3}{\left(x-1\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.