Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\left(x+1\right)\times 3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Η μεταβλητή x δεν μπορεί να είναι ίση με οποιαδήποτε από τις τιμές -1,1 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το 2\left(x-1\right)\left(x+1\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των 2x-2,x+1,x-1.
3x+3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x+1 με το 3.
3x+3+6x-6=\left(2x+2\right)x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x-2 με το 3.
9x+3-6=\left(2x+2\right)x
Συνδυάστε το 3x και το 6x για να λάβετε 9x.
9x-3=\left(2x+2\right)x
Αφαιρέστε 6 από 3 για να λάβετε -3.
9x-3=2x^{2}+2x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x+2 με το x.
9x-3-2x^{2}=2x
Αφαιρέστε 2x^{2} και από τις δύο πλευρές.
9x-3-2x^{2}-2x=0
Αφαιρέστε 2x και από τις δύο πλευρές.
7x-3-2x^{2}=0
Συνδυάστε το 9x και το -2x για να λάβετε 7x.
-2x^{2}+7x-3=0
Αναδιατάξτε το πολυώνυμο για να το θέσετε σε τυπική μορφή. Τοποθετήστε τους όρους με τη σειρά, από τη μεγαλύτερη προς τη μικρότερη δύναμη.
a+b=7 ab=-2\left(-3\right)=6
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως -2x^{2}+ax+bx-3. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,6 2,3
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι θετική, a και b είναι θετικοί. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 6.
1+6=7 2+3=5
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=6 b=1
Η λύση είναι το ζεύγος που δίνει άθροισμα 7.
\left(-2x^{2}+6x\right)+\left(x-3\right)
Γράψτε πάλι το -2x^{2}+7x-3 ως \left(-2x^{2}+6x\right)+\left(x-3\right).
2x\left(-x+3\right)-\left(-x+3\right)
Παραγοντοποιήστε 2x στο πρώτο και στο -1 της δεύτερης ομάδας.
\left(-x+3\right)\left(2x-1\right)
Παραγοντοποιήστε τον κοινό όρο -x+3 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=3 x=\frac{1}{2}
Για να βρείτε λύσεις εξίσωσης, να λύσετε -x+3=0 και 2x-1=0.
\left(x+1\right)\times 3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Η μεταβλητή x δεν μπορεί να είναι ίση με οποιαδήποτε από τις τιμές -1,1 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το 2\left(x-1\right)\left(x+1\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των 2x-2,x+1,x-1.
3x+3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x+1 με το 3.
3x+3+6x-6=\left(2x+2\right)x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x-2 με το 3.
9x+3-6=\left(2x+2\right)x
Συνδυάστε το 3x και το 6x για να λάβετε 9x.
9x-3=\left(2x+2\right)x
Αφαιρέστε 6 από 3 για να λάβετε -3.
9x-3=2x^{2}+2x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x+2 με το x.
9x-3-2x^{2}=2x
Αφαιρέστε 2x^{2} και από τις δύο πλευρές.
9x-3-2x^{2}-2x=0
Αφαιρέστε 2x και από τις δύο πλευρές.
7x-3-2x^{2}=0
Συνδυάστε το 9x και το -2x για να λάβετε 7x.
-2x^{2}+7x-3=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-7±\sqrt{7^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -2, το b με 7 και το c με -3 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Υψώστε το 7 στο τετράγωνο.
x=\frac{-7±\sqrt{49+8\left(-3\right)}}{2\left(-2\right)}
Πολλαπλασιάστε το -4 επί -2.
x=\frac{-7±\sqrt{49-24}}{2\left(-2\right)}
Πολλαπλασιάστε το 8 επί -3.
x=\frac{-7±\sqrt{25}}{2\left(-2\right)}
Προσθέστε το 49 και το -24.
x=\frac{-7±5}{2\left(-2\right)}
Λάβετε την τετραγωνική ρίζα του 25.
x=\frac{-7±5}{-4}
Πολλαπλασιάστε το 2 επί -2.
x=-\frac{2}{-4}
Λύστε τώρα την εξίσωση x=\frac{-7±5}{-4} όταν το ± είναι συν. Προσθέστε το -7 και το 5.
x=\frac{1}{2}
Μειώστε το κλάσμα \frac{-2}{-4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=-\frac{12}{-4}
Λύστε τώρα την εξίσωση x=\frac{-7±5}{-4} όταν το ± είναι μείον. Αφαιρέστε 5 από -7.
x=3
Διαιρέστε το -12 με το -4.
x=\frac{1}{2} x=3
Η εξίσωση έχει πλέον λυθεί.
\left(x+1\right)\times 3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Η μεταβλητή x δεν μπορεί να είναι ίση με οποιαδήποτε από τις τιμές -1,1 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το 2\left(x-1\right)\left(x+1\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των 2x-2,x+1,x-1.
3x+3+\left(2x-2\right)\times 3=\left(2x+2\right)x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x+1 με το 3.
3x+3+6x-6=\left(2x+2\right)x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x-2 με το 3.
9x+3-6=\left(2x+2\right)x
Συνδυάστε το 3x και το 6x για να λάβετε 9x.
9x-3=\left(2x+2\right)x
Αφαιρέστε 6 από 3 για να λάβετε -3.
9x-3=2x^{2}+2x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x+2 με το x.
9x-3-2x^{2}=2x
Αφαιρέστε 2x^{2} και από τις δύο πλευρές.
9x-3-2x^{2}-2x=0
Αφαιρέστε 2x και από τις δύο πλευρές.
7x-3-2x^{2}=0
Συνδυάστε το 9x και το -2x για να λάβετε 7x.
7x-2x^{2}=3
Προσθήκη 3 και στις δύο πλευρές. Το άθροισμα οποιουδήποτε αριθμού με το μηδέν ισούται με τον ίδιο αριθμό.
-2x^{2}+7x=3
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
\frac{-2x^{2}+7x}{-2}=\frac{3}{-2}
Διαιρέστε και τις δύο πλευρές με -2.
x^{2}+\frac{7}{-2}x=\frac{3}{-2}
Η διαίρεση με το -2 αναιρεί τον πολλαπλασιασμό με το -2.
x^{2}-\frac{7}{2}x=\frac{3}{-2}
Διαιρέστε το 7 με το -2.
x^{2}-\frac{7}{2}x=-\frac{3}{2}
Διαιρέστε το 3 με το -2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{7}{4}\right)^{2}
Διαιρέστε το -\frac{7}{2}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{7}{4}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{7}{4} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
Υψώστε το -\frac{7}{4} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
Προσθέστε το -\frac{3}{2} και το \frac{49}{16} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}
Παραγον x^{2}-\frac{7}{2}x+\frac{49}{16}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{7}{4}=\frac{5}{4} x-\frac{7}{4}=-\frac{5}{4}
Απλοποιήστε.
x=3 x=\frac{1}{2}
Προσθέστε \frac{7}{4} και στις δύο πλευρές της εξίσωσης.