Mετάβαση στο κυρίως περιεχόμενο
Διαφόριση ως προς x
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{\left(x^{3}+9\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3})-2x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+9)}{\left(x^{3}+9\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{3}+9\right)\times 3\times 2x^{3-1}-2x^{3}\times 3x^{3-1}}{\left(x^{3}+9\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{3}+9\right)\times 6x^{2}-2x^{3}\times 3x^{2}}{\left(x^{3}+9\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{x^{3}\times 6x^{2}+9\times 6x^{2}-2x^{3}\times 3x^{2}}{\left(x^{3}+9\right)^{2}}
Αναπτύξτε χρησιμοποιώντας την επιμεριστική ιδιότητα.
\frac{6x^{3+2}+9\times 6x^{2}-2\times 3x^{3+2}}{\left(x^{3}+9\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{6x^{5}+54x^{2}-6x^{5}}{\left(x^{3}+9\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{\left(6-6\right)x^{5}+54x^{2}}{\left(x^{3}+9\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{54x^{2}}{\left(x^{3}+9\right)^{2}}
Αφαιρέστε 6 από 6.