Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς m
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m}{\left(m+n\right)\left(m-n\right)}-\frac{1}{m-n}
Παραγοντοποιήστε με το m^{3}+n^{3}. Παραγοντοποιήστε με το m^{2}-n^{2}.
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(m+n\right)\left(m^{2}-mn+n^{2}\right) και \left(m+n\right)\left(m-n\right) είναι \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). Πολλαπλασιάστε το \frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} επί \frac{m-n}{m-n}. Πολλαπλασιάστε το \frac{2m}{\left(m+n\right)\left(m-n\right)} επί \frac{m^{2}-mn+n^{2}}{m^{2}-mn+n^{2}}.
\frac{2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Από τη στιγμή που οι αριθμοί \frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} και \frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Κάντε τους πολλαπλασιασμούς στο 2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right).
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Συνδυάστε παρόμοιους όρους στο 2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) και m-n είναι \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). Πολλαπλασιάστε το \frac{1}{m-n} επί \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}.
\frac{2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Από τη στιγμή που οι αριθμοί \frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} και \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Κάντε τους πολλαπλασιασμούς στο 2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right).
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Συνδυάστε παρόμοιους όρους στο 2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}.
\frac{\left(m-n\right)\left(m^{2}+mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}.
\frac{m^{2}+mn+n^{2}}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}
Απαλείψτε το m-n στον αριθμητή και παρονομαστή.
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
Αναπτύξτε το \left(m+n\right)\left(m^{2}-mn+n^{2}\right).