Υπολογισμός
\frac{\left(2a-7\right)\left(a+2\right)}{\left(a-2\right)\left(4a+7\right)}
Ανάπτυξη
\frac{2a^{2}-3a-14}{\left(a-2\right)\left(4a+7\right)}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{\frac{2\left(a-2\right)}{a-2}-\frac{3}{a-2}}{4-\frac{1}{a+2}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 2 επί \frac{a-2}{a-2}.
\frac{\frac{2\left(a-2\right)-3}{a-2}}{4-\frac{1}{a+2}}
Από τη στιγμή που οι αριθμοί \frac{2\left(a-2\right)}{a-2} και \frac{3}{a-2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\frac{2a-4-3}{a-2}}{4-\frac{1}{a+2}}
Κάντε τους πολλαπλασιασμούς στο 2\left(a-2\right)-3.
\frac{\frac{2a-7}{a-2}}{4-\frac{1}{a+2}}
Συνδυάστε παρόμοιους όρους στο 2a-4-3.
\frac{\frac{2a-7}{a-2}}{\frac{4\left(a+2\right)}{a+2}-\frac{1}{a+2}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 4 επί \frac{a+2}{a+2}.
\frac{\frac{2a-7}{a-2}}{\frac{4\left(a+2\right)-1}{a+2}}
Από τη στιγμή που οι αριθμοί \frac{4\left(a+2\right)}{a+2} και \frac{1}{a+2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\frac{2a-7}{a-2}}{\frac{4a+8-1}{a+2}}
Κάντε τους πολλαπλασιασμούς στο 4\left(a+2\right)-1.
\frac{\frac{2a-7}{a-2}}{\frac{4a+7}{a+2}}
Συνδυάστε παρόμοιους όρους στο 4a+8-1.
\frac{\left(2a-7\right)\left(a+2\right)}{\left(a-2\right)\left(4a+7\right)}
Διαιρέστε το \frac{2a-7}{a-2} με το \frac{4a+7}{a+2}, πολλαπλασιάζοντας το \frac{2a-7}{a-2} με τον αντίστροφο του \frac{4a+7}{a+2}.
\frac{2a^{2}+4a-7a-14}{\left(a-2\right)\left(4a+7\right)}
Εφαρμόστε την επιμεριστική ιδιότητα πολλαπλασιάζοντας κάθε όρο του 2a-7 με κάθε όρο του a+2.
\frac{2a^{2}-3a-14}{\left(a-2\right)\left(4a+7\right)}
Συνδυάστε το 4a και το -7a για να λάβετε -3a.
\frac{2a^{2}-3a-14}{4a^{2}+7a-8a-14}
Εφαρμόστε την επιμεριστική ιδιότητα πολλαπλασιάζοντας κάθε όρο του a-2 με κάθε όρο του 4a+7.
\frac{2a^{2}-3a-14}{4a^{2}-a-14}
Συνδυάστε το 7a και το -8a για να λάβετε -a.
\frac{\frac{2\left(a-2\right)}{a-2}-\frac{3}{a-2}}{4-\frac{1}{a+2}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 2 επί \frac{a-2}{a-2}.
\frac{\frac{2\left(a-2\right)-3}{a-2}}{4-\frac{1}{a+2}}
Από τη στιγμή που οι αριθμοί \frac{2\left(a-2\right)}{a-2} και \frac{3}{a-2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\frac{2a-4-3}{a-2}}{4-\frac{1}{a+2}}
Κάντε τους πολλαπλασιασμούς στο 2\left(a-2\right)-3.
\frac{\frac{2a-7}{a-2}}{4-\frac{1}{a+2}}
Συνδυάστε παρόμοιους όρους στο 2a-4-3.
\frac{\frac{2a-7}{a-2}}{\frac{4\left(a+2\right)}{a+2}-\frac{1}{a+2}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 4 επί \frac{a+2}{a+2}.
\frac{\frac{2a-7}{a-2}}{\frac{4\left(a+2\right)-1}{a+2}}
Από τη στιγμή που οι αριθμοί \frac{4\left(a+2\right)}{a+2} και \frac{1}{a+2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\frac{2a-7}{a-2}}{\frac{4a+8-1}{a+2}}
Κάντε τους πολλαπλασιασμούς στο 4\left(a+2\right)-1.
\frac{\frac{2a-7}{a-2}}{\frac{4a+7}{a+2}}
Συνδυάστε παρόμοιους όρους στο 4a+8-1.
\frac{\left(2a-7\right)\left(a+2\right)}{\left(a-2\right)\left(4a+7\right)}
Διαιρέστε το \frac{2a-7}{a-2} με το \frac{4a+7}{a+2}, πολλαπλασιάζοντας το \frac{2a-7}{a-2} με τον αντίστροφο του \frac{4a+7}{a+2}.
\frac{2a^{2}+4a-7a-14}{\left(a-2\right)\left(4a+7\right)}
Εφαρμόστε την επιμεριστική ιδιότητα πολλαπλασιάζοντας κάθε όρο του 2a-7 με κάθε όρο του a+2.
\frac{2a^{2}-3a-14}{\left(a-2\right)\left(4a+7\right)}
Συνδυάστε το 4a και το -7a για να λάβετε -3a.
\frac{2a^{2}-3a-14}{4a^{2}+7a-8a-14}
Εφαρμόστε την επιμεριστική ιδιότητα πολλαπλασιάζοντας κάθε όρο του a-2 με κάθε όρο του 4a+7.
\frac{2a^{2}-3a-14}{4a^{2}-a-14}
Συνδυάστε το 7a και το -8a για να λάβετε -a.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}