Λύση ως προς u_13
u_{13}=\frac{u_{k}^{2}+1300}{90}
Λύση ως προς u_k (complex solution)
u_{k}=-\sqrt{90u_{13}-1300}
u_{k}=\sqrt{90u_{13}-1300}
Λύση ως προς u_k
u_{k}=\sqrt{90u_{13}-1300}
u_{k}=-\sqrt{90u_{13}-1300}\text{, }u_{13}\geq \frac{130}{9}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
2u_{k}^{2}-180u_{13}+866\times 3+2=0
Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με 3.
2u_{k}^{2}-180u_{13}+2598+2=0
Πολλαπλασιάστε 866 και 3 για να λάβετε 2598.
2u_{k}^{2}-180u_{13}+2600=0
Προσθέστε 2598 και 2 για να λάβετε 2600.
-180u_{13}+2600=-2u_{k}^{2}
Αφαιρέστε 2u_{k}^{2} και από τις δύο πλευρές. Το υπόλοιπο της αφαίρεσης οποιουδήποτε αριθμού από το μηδέν ισούται με τον αντίστοιχο αρνητικό αριθμό.
-180u_{13}=-2u_{k}^{2}-2600
Αφαιρέστε 2600 και από τις δύο πλευρές.
\frac{-180u_{13}}{-180}=\frac{-2u_{k}^{2}-2600}{-180}
Διαιρέστε και τις δύο πλευρές με -180.
u_{13}=\frac{-2u_{k}^{2}-2600}{-180}
Η διαίρεση με το -180 αναιρεί τον πολλαπλασιασμό με το -180.
u_{13}=\frac{u_{k}^{2}}{90}+\frac{130}{9}
Διαιρέστε το -2u_{k}^{2}-2600 με το -180.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}